Strange matter production in heavy ion collisions at Nuclotron (BM@N project) Baryonic Matter at Nuclotron

V.P.Ladygin for BM@N Collaboration XXI-th Baldin ISHEPP, 13 September 2012

Nuclotron-based Ion Collider fAcility (NICA)

NICA: Nuclotron-based Ion Collider fAcility

- Flagship project at JINR
- Based on the development of the Nuclotron facility
- Optimal usage of the existing infrastructure
- Modern machine which incorporates new technological concepts
- First colliding beams 2017

- NICA advantages:
- → Energy range $\sqrt{s_{NN}}$ = 4-11 GeV highest baryon density
- Available ion species: from p to Au
- ✤ High luminosity: Au+Au up to 10²⁷

Energy Range of NICA The most intriguing and unexplored region of the QCD phase diagram:

Highest net baryon density

Onset of deconfinement phase transition

Discovery potential: a) Critical End Point (CEP) b) Chiral Symmetry Restoration c) Hypothetic Quarkyonic phase

Complementary to the RHIC/BES, NA61/CERN, CBM\&HADES/FAIR experimental programs

Comprehensive experimental program requires scan over the QCD phase diagram by varying collision parameters: system size, beam energy and collision centrality 1) Heavy ion colliding beams 197Au79+ 197Au79+ at $\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} (1 \div 4.5 \text{ GeV/u} \text{ ion kinetic energy})$ at L_{average} = 1E27 cm-2s-1 (at $\sqrt{s_{NN}} = 9 \text{ GeV}$)

2) Polarized beams of protons and deuterons in collider mode:

 $p\uparrow p\uparrow \sqrt{s_{pp}} = 12 \div 27 \text{ GeV} (5 \div 12.6 \text{ GeV kinetic energy})$

 $d\uparrow d\uparrow \sqrt{s_{NN}} = 4 \div 13.8 \text{ GeV} (2 \div 5.9 \text{ GeV/u ion kinetic energy})$

3) The beams of ions and polarized protons and deuterons for fixed target experiments:

Li -Au = 1 ÷ 4.5 GeV /u ion kinetic energy p, p↑ = 5 ÷ 12.6 GeV kinetic energy d, d↑ = 2 ÷ 5.9 GeV/u ion kinetic energy 4) Applied research on ion beams at kinetic energy from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)

Facility Scheme and Operation Scenario

Nuclotron for FT experiments

- d, d î , Li,C... = 1 ÷ 6.0 GeV/u ion kinetic energy
- Au = 1 ÷ 4.65 GeV /u ion kinetic energy (10⁷ /sec with booster)
- **P** = 1 ÷ 12.6 GeV kinetic energy

Countries: Belarus, Bulgaria, Moldova, Romania, Russia, Slovakia, Ukraine + Germany + France

Russia: INR, SINP MSU, IHEP + 2 University **Germany**: GSI, Frankfurt U., Giessen U., FIAS

+Institutes from CBM-MPD Consortium

Goal of the experiment

Measurements of the multistrange objects (Ξ , Ω , exotics) and hypernuclei in heavy ions collisions using extracted beams at Nuclotron close to the **threshold production** at the nuclear density of about **3-4** ρ_0

The detector for the first stage of the experiment will be based on the developments for CBM, MPD and SPD (HADES)

Messengers from the dense fireball at Nuclotron beam energies

E⁻ Hyperons at AGS: Au+Au 6 AGeV

Deep sub-threshold E⁻ production in Ar+KCl at 1.76 GeV at HADES

Yield of (multi-s) hypernuclei in A+A collisions

Thermal model:

A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, arXiv:1010.2995v1 [nucl-th]

Feasibility studies for large aperture setup layout at 4 GeV

Hypernuclei production for large aperture layout at 4GeV

${}^{3}H_{\Lambda}$ reconstruction in CBM (200k events)

Simulation – A.Zinchenko et al. (LHEP JINR)

Counting rate and beam time estimation

Hyperons production in Au+Au @ 4 GeV

Particle	E _{thr} NN M M		М	3	Yield/s	Yield/week	
	GeV	central	m.bias	%	m. bias	m. bias	
Ξ-	3.7	1 · 10 ⁻¹	2.5 · 10 ⁻²	3	75	$4.5 \cdot 10^{7}$	
Ω¯	6.9	2 · 10 ⁻³	5 · 10 ⁻⁴	3	1.5	9 · 10 ⁵	
Anti-∧	7.1	2 · 10 ⁻⁴	5 · 10 ⁻⁵	15	0.15	$9\cdot 10^4$	
Ξ+	9.0	6 · 10 ⁻⁵	1.5 · 10-5	3	4.5 · 10 ⁻²	$2.7 \cdot 10^4$	
Ω ⁺	12.7	1 · 10 ⁻⁵	2.5 · 10 ⁻⁶	3	7.5 · 10 ⁻³	$4.5 \cdot 10^{3}$	

Hypernuclei production in Au+Au @ 4 GeV

Γ	Hyper	yper M		Yield/s	Yield/week
	nuclei	central	%	central	central
Γ	^{3}H	2·10 ⁻²	8	16	107
Γ	^∿₂H	1·10 ⁻⁶	1	1·10 ⁻⁴	60
Γ	^₀eHe	3·10 ⁻⁸	1	3·10⁻ ⁶	1.8

0.1 MHz min.bias interactions (beam is 10⁷ Au/sec and thin - 1% Au target)

The detection system at the beamline 6V in the experimental hall 205

At the first stage of the experiment the existing magnetic optics: 2 lenses, 2 rotating magnets and large analyzing magnet of the 6V beamline will be used.

Large Acceptance Spectrometer with Tracker

Tracker (silicon or hybrid)

For Nuclotron experiment alsoCBM GSI8 Stations (last 4 with smaller size)MPD JINR(last 4 - GEMs and straws)

Demonstrator module

Front-end electronics board based on n-XYTER chip

> mockup of a tracker module

Stage 1 of BM@N setup

RPC at the distance of 8 m from the target

PID using TOF and momentum

Au+Au @3.5 GeV Cu+Cu @ 5 GeV TOF baseline of 10m and resolution 80 ps provides the good PID Simulation- T.Vasiliev (LHEP-JINR) 22

Simulation for TOF

Simulation for TOF

2 options: warm float glass mRPCs outer part — float glass RPCs

T0 for TOF system

Diamond detector with good timing resolution SciFi detectors for low intensity (and test) beam

Outer tracker (DC and ST)

2 Drift Chambers (NA48 JINR/CERN)

Straw Tubes Station (CBM GSI, MPD JINR)

4mm straw detector at 4 m

Zero Degree Calorimeter

PSD-type (CBM/NA61 INR)

HCAL-type (COMPASS JINR/IHEP)

Feasibility studies for Nuclotron experiment (CBM SC magnet)

The detection efficiency 2 times less than for CBM (from simulation performed At JINR and GSI)

Simulation: B scale

B=

0.5

0.67

1.0 Bmax

Enlargement of the acceptance

Ω-hyperons reconstruction requires PID by TOF. It is neccessary to increase the acceptance.

Enlarge the distance between the poles of existing WM (upto 1m).

Further simulation is required!

Steps in 2011 (Phase0)

Site preparation

Magnetic elements of 6V beamline reparation

- **Technical Requirement for the site and the beam**
- **Magnetic optics calculations**
- Simulation and setup optimization
- **Project preparation**
- **Urgent expences (minimal R&D, PMTs etc.)**
- Test beam in the Dec. 2011 Nuclotron run

BM@N area in November 2011

Ready for testbeam with carbon at 6V beamline

December 2011 carbon test beam results

The measurements at 3.42 A GeV at Nuclotron with carbon beam and the existing beamlines are feasible!

Time table of the experiment

Phase0 (2011) – The site preparation and simulation Phase1 (2012-2014)–The detector construction and commissioning Phase2 (2015-.....) - The data taking at 3.5, 4.0 and 4.65 A GeV

Status of the experiment in 2012

- 1. The experiment is approved by JINR PAC for 2012 with the first priority for the comprehensive TDR preparation
- 2. Money for infrastructure and prototypes for 2012 are supplied from JINR budget in full volume

We are forming now the working groups (InfraStructure, FEE-DAQ, Tracking, Magnet, Centrality Detectors, Silicon Tracker, TOF)

Physics - 31 July 2012 Detectors - 1 August 2012

March 2012 deuteron test beam at 4 GeV

Needs to increase the ramp velocity to 6kGs/s and duration of the flattop in order to have duty factor 0.5

17 March 2012 deuteron test beam results

- 1. The measurements at 3.5 and 4.0 A GeV at Nuclotron with the existing beamlines are feasible.
- 2. Test beam (protons and deuterons) can be provided in the energy range 1-4 GeV/nucleon.

Analyzing magnet SP-41 (warm)

The field integral is 2 T·m at the max. current (1900 A) In March 2012 run the current up to 1570 A was used.

This will allow to perform the measurements up to 4.65 A GeV (maximal energy of Au-beam)

Existing Magnet

Enlarged Magnet (+24 cm)

Field integral is 25% less (1 cm = 1%)

Further steps in 2012

- 1. Test beam in February-March with 3.5-4.0 A GeV deuterons (done).
- 2. Working groups, definition of the minimal configuration for the experiment.
- 3. Infrastructure for the experiment and detectors manufacture.
- 4. Test beam in November 2012 reading of several different detectors. Due magnet problem – cosmic run?

2012-2013

1. End of 2012 – LoI, CDR, TDR for the start version

- 2. End of 2013 TDR (STS+ GD-tracker)
- 3. Hopefully, end 2013 first stage of the setup (magnetic spectrometer option and test beam area) will be ready.
- 4. 2012-2013 agreements, fundings.

Life after 2016

Assuming that there will be a life after 21.12.2012, the following question arises: If there will a room for BM@N during CBM&HADES at SIS100 and MPD at NICA ?

Answer: Yes, but we have to find the unique branch

Options: large aperture, fine electromagnetic calorimetry, wide scientific program (including spin effects)

Strong theoretical support is required!

Conclusions

- High discovery potential, new insight of the problem
- Frontier for the large scale experiments (CBM, MPD, SPD etc.)
- New detector technologies for JINR home experiments

- Inevitable step in the collider experiments (MPD and SPD) realization
- Young JINR scientists perspectives

Backup slides

JINR budget request

Form Nº29

Estimate of the JINR budget expences for the project: **Study of the strange matter production in the heavy ion collisions at Nuclotron** (**BM@N project**).

N₂	Title of the expences	Total	1	2	3	4	5
		cost,	year	year	year	year	year
		k\$					
	Direct expences	3300	700	900	700	500	500
1.	Accelerator	2500	100	300	500	500	600
	Nuclotron (hours)						
2.	Computing						
З.	Computer network						
4.	Design office (n.hours)	5000	1500	1500	1000	500	500
5.	Model shop (n.hours))	5500	1200	1200	1200	1000	900
6.	Matherials	1100	250	300	230	160	160
7.	Equipment	1400	300	440	310	180	170
8.	Payment of SEW, made on	500	100	100	100	100	100
	the						
	agreements						
0	Tanal an appear	200	50	60	60	CD	70
9.	Lingladiag	500	50	00	00	00	170
	1 micruaning	250	40	50	50	50	60
	a) countries of the non-	250	40	50	50	50	60
	L rouble zone	50	10	10	10	10	10
	b) rouble zone						
	c) travels on the contracts					1	

Project leader

LHEP Director

Leading economist

Ladygin V.P.

Kekelidze V.D.

Volkova G.G.

of LHEP

Detector of Transverse Energy

(INR/JINR)

DTE is 30 blocks of 15x15 cm² and 14 X₀ scintillating glass SGS1

(from **PINOT** spectrometer).

Test beam with 2 blocks at ITS at Nuclotron

Total request

Form Nº 26

Suggested time-table and wherewithal for realization of project: Study of the strange matter production in the heavy ion collisions at Nuclotron (<u>BM@N</u> project).

Name of components and systems at plants, resources, funding sources		amponents is at plants, funding	Cost of components (k\$) of plant. Resources	Proposals of laboratories on financing and resources					
			requirements	1 y.	2у.	Зу.	4 y.	5 y.	
rquipment and matherials		Detectors	4500	300	500	2000	1200	500	
		Registration electronics	3500	300	500	1500	1100	100	
		Protutypes	500	100	150	150	50	50	
		Infrastructure	1200	100	300	400	200	200	
		DAQ/FLES	500	50	50	150	200	50	
)lher	Hours	JINR model shop							
) 53		Design office	5000 hours	1500	1500	1000	500	500	
PEOUT		LHEP model shop	5500 hours	1200	1200	1200	1000	900	
L	Haus	Accelerator Nuclotron Reactor Computing	2500 hours	100	300	500	500	600	
		Operating costs							
and		Budget cost	3300	700	900	700	500	500	
Iundings Sources	Rugder	currency amount	300	50	60	60	60	70	
	Out hudget	Collaboration holding Grants	500	100	100	100	100	100	
		Sponsors Contracts Other sources	6700	100	560	3460	2210	370	

TOF acceptance

plane size: 2m x 4m, beam hole: 0.2m x 0.2m

51

Feasibility studies with existing warm magnet

3 times less efficiency After minor optimizationgood agreement with previous simulations.

A.Zinchenko (LHEP JINR)

Further optimization is required!

Main subdetectors (tracking, particle ID & centrality

(CBM

Outer Tracker: NA48 drift chambers

CBM/

INR

RPC TOF

Silicon Tracker System (CBM-GSI)

Demonstrator module

Front-end electronics board based on n-XYTER chip

> mockup of a tracker module

TOF system (mRPC)

Symmetrical structure, differential readout

MPD-TOF JINR