

High Energy Protons from C-12 Fragmentation

B.M.Abramov, P.N.Alekseev, Yu.A.Borodin, S.A.Bulychjov, I.A.Dukhovskoy, A.I.Khanov, A.P.Krutenkova, <u>V.V.Kulikov</u>, M.A.Martemyanov, M.A.Matsyuk, E.N.Turdakina

Institute for Theoretical and Experimental Physics, Moscow, Russia

XXI International Baldin Seminar on High Energy Physics Problems. Dubna, JINR. September 10-15, 2012.

Experiment FRAGM ${}^{12}C + Be \rightarrow f + X$

¹²C fragments at 3.5^o: p, d, t, ³He, ⁴He, ⁶He, ⁸He,...C ¹²C kinetic energies: $T_0 = 0.2 - 3.2$ GeV/nucleon

Here we focus mostly on: protons with momentum higher than momentum per nucleon of the projectile

Motivation:

- origin of high momentum (cumulative) particles in interactions with nuclei is still an open question
- there is a lot of data in pA,nA,πA,... interactions (A.M.Baldin, V.S.Stavinsky, G.A.Leksin and others) and only a few in ion-ion collisions

ITEP accelerator complex TWAC

TWAC current parameters Proton acceleration :

TWAC= TeraWatt

50 - 10000 MeV \checkmark Ion acceleration : up to 4 GeV/nucleon Ion accumulation : up to 700 MeV/nucleon ✓ Accelerating ions : up to ⁵⁶Fe Typical intensity : 10^{11} nucleons / s

Experiment FRAGM

Example of fragment selection at 0.3 GeV/nucleon

Proton selection at high energy

C – Be collisions at 2.0 GeV/nucleon

C – Be collisions at 0.3 GeV/nucleon

FRAGM

Proton momentum spectrum at 300 MeV/n

Dubna 2012, V.Kulikov

- (Projectile) + (Target) \rightarrow Pforward + all
- $T_0 = Tproj. (GeV/nucleon), p_0 = p_{proj.}(GeV/c/nucleon),$
- p outgoing proton momentum
- $X = p/p_0$, where p_0 is projectile momentum per nucleon and it is also maximal proton momentum for collisions of free nucleons
- $X_{lf} = (E+p)/(E_0+p_0) relativistic invariant light front variable, for our energy range the difference between X and X_{lf} is 3% 15%$
- X_s introduced by V.S.Stavinsky(JINR) $(X_s*M_n min. projectile mass$ that can produce proton with given momentum, it is obtained from energy-momentum conservation $(X_s*p_0+M_n-p)^2 = (X_s*M_n)^2$ for free nucleon target

$$X = X_{lf} = X_s$$
 at high energy but at our energy region \rightarrow

X_s vs X for different energies

Comparison of X_s and X-spectra at 300 MeV/n

Dubna 2012, V.Kulikov

Nature of cumulative protons is under discussion up to now.

Within appropriate models they can come from :

- highly excited nuclear pre-fragments (FLUKA,RQMD)
- intranuclear multiple scattering (V.Kopeliovich)
- Fluctuations of nuclear matter density (Blokhintsev)
- short-range correlations (SRC) of nucleons (Frankfurt, Strikman)
- multiquark clusters (Burov, Lukyanov, Titov(1984);
 Efremov, Kaidalov, Lykasov, Slavin(1994))
- ✓ We tried to estimate the probabilities of the existence in nucleus of the multiquark clusters using approaches by Efremov and Kaidalov in the framework of quark−gluon string model (QGSM)

Cumulative protons from multiquark clusters

Production of cumulative protons is considered as fragmentation into protons of clusters consisting of 3k valence quarks (k=1: (3q) – nucleon, k=2: (6q) – two - nucleon cluster, k=3: (9q) – three - nucleon cluster); w_k is the probability to find k - nucleon cluster in ¹²C; x = p / p₀

$\mathsf{Ed}^{3}\sigma/\mathsf{d}^{3}\mathsf{p}(\mathsf{x},\mathsf{p}_{t}^{2}) = \mathsf{C}'(w_{1}\mathsf{g}(\mathsf{x},\mathsf{p}_{t}^{2}) + w_{2}\mathsf{b}_{2}(\mathsf{x},\mathsf{p}_{t}^{2}) + w_{3}\mathsf{b}_{3}(\mathsf{x},\mathsf{p}_{t}^{2}))$

 $g(x,p_t^2) = G \exp(-0.5 (1-x-\Delta)^2/\sigma_x^2) \exp(-0.5 p_t^2/\sigma_n^2)$

 $b_2(x,p_t^2) = B_2(x/2)^3 (1-x/2)^3 \exp(-\alpha_1 p_t^2), \quad b_2(x,p_t^2) = 0 \text{ at } x > 2$

 $b_3(x,p_t^2) = B_3 (x/3)^3 (1-x/3)^6 \exp(-\alpha_2 p_t^2), \quad b_3(x,p_t^2) = 0 \text{ at } x > 3$

where g, b₂, b₃ are known fragmentation functions (QGSM). G, B₂ and B₃ are known normalization constants. Transverse parameters α_1 and α_2 from Phys.Rev. C 28 (1983) 1224

$$G = 1/(2 \cdot \sigma_x \cdot \sqrt{2\pi}) \cdot 1/(2 \cdot \sigma_p^2), \sigma_p = \sigma_x \cdot m_p \cdot p_0/E_0,$$

$$\int \int B_i \cdot b_i(x, p_t^2) dx dp_t^2 = i/2, i = 2, 3$$

Fitted variables are: C', $W_2 = w_2/w_1$, $W_3 = w_3/w_1$, Δ , σ_x

X spectra at different energies

Dubna 2012, V.Kulikov

T ₀ , GeV/n	w ₁ (3q)	^w 2 (6q)	w ₃ (9q)	
0.3	0.95 0.94	0.05(1) 0.06(1)	0.002(1) 0.004(1)	
0.6	0.915	0.08(1)	0.005(2)	
2.0	0.894	0.10(2)	0.006(1)	
3.2	0.76	0.24(8)	-	
Quark cluster probabilities (theor.)	0.847	0.125 0.06	0.026	M. Sato et al (1986) V.Burov et al(1977),pions,
¹² C (e,e') at J – LAB (E = 4.4 GeV)	_	0.19(4)	0.006(2)	fluctuon K.S. Egiyan et al (2006)(SRC)

> Quantitative estimates on few nucleon clusters in nuclei could be obtained from fragmentation data

> Wider range on X and wider projectile energy range are desirable

Proton yields from reaction ⁹Be (¹²C, p) X were measured at $T_0 = 0.2 - 3.2$ GeV/nucleon in projectile fragmentation region

- Proton momentum spectra are obtained in both evaporation and cumulative regions. Data cover seven orders of cross section magnitude.
- ✓ For the first time data were obtained in a region unreachable for nucleon-nucleus interactions.
- Cumulative number X spectra were analyzed in a multi quark cluster + quark gluon string model
- ✓ Probabilities of existence of 6q and 9q clusters in ¹²C were estimated to be $w_6 \sim 10\%$ and $w_9 < 1\%$. Results for w_6 are in reasonable agreement with theoretical predictions and **J**-**LAB** measurements

