NEUTRAL PION FLUCTUATION STUDIES at U-70

E. Kokoulina, A.Kolyada^{*)} and R.Salyanko^{*)} On behalf of SVD Collaboration (JINR, IHEP, SINP MSU) ^{*)} Gomel State University

ISHEPP 2012, Dubna

<u>Aim</u>: Search for collective phenomena in *pp* (*pA*) collisions at U-70 accelerator, IHEP (Protvino, Russia) $p + p(A) \rightarrow 2N + n_{\pi}$

Multiplicity: n_{ch} , n_0 , $n_{tot} = n_{ch} + n_0$; p = 50GeV/c. High Multiplicity (HM) region: $n >> \overline{n}$.

V.V. Avdeichikov et al., *Project "Thermalization",* Preprint № P1-2004-190, JINR (Dubna, 2004).

SEARCH FOR COLLECTIVE PHENOMENA

- Bose-Einstein Condensation (BEC);
- Cherenkov radiation, shock waves ...;
- Anomaly soft photon yield (the possible connection with BEC);
- Fluctuations, correlations, turbulence ...

High Mult Trig

SVD-2 (Spectrometer with Vertex Detector)

SCINTILLATOR HODOSCOPE (HIGH MULTIPLICITY TRIGGER, HMT) HMT suppresses low multiplicity events in 100 times!

HMT Trigger level = n x MIP (n=8,10,12)

Table 1. Topological cross sections for pp –interactions at 50 GeV, SVD Collaboration[Phys.Part.Nucl.Lett. 8 (2011) ; $\Re \Phi$,75 (2012)]

n _{ch}	10	12	14	16	18	20	22	24
σ, mb	1.685	0.789	0.234	0.0526	0.0104	0.0017	0.00033	0.000054
$\Delta \sigma$, mb	0.017	0.012	0.006	0.0031	0.0014	0.0006	0.00024	0.000098

Table 2. The same, Mirabelle data [PL, 42B (1972) 519].

N _{ch}	2	4	6	8	10	12	14	16		
σ, mb	5.97	9.40	7.99	5.02	2.03	0.48	0,20	0,01		
$\Delta \sigma$, mb	0.88	0.47	0.43	0.33	0.20	0.10	0.06	0.02		

Comparison with models

Gluon fission in pp, pp & e⁺e⁻

 $p(p_1) + \bar{p}(p_2) \rightarrow V(q) \rightarrow q(q_-) + \bar{q}(q_+) + g(k_1) + g(k_2)$

The g-fission inclusion improves essentially description of $\sigma(n_{ch})$ at the HM area

NEUTRAL PION NUMBER FLUCTUATION predictions at HM region in pp at 70 GeV/c

The phase diagram of the ideal pion gas. The dashed line corresponds to $\mu=0$, the solid – BEC at $T=T_C$ (TL), the dotted lines present the trajectories in the (ρ – T) plane with fixed energy densities: $\epsilon = 6$, 20 and 60 MeV/fm³. N_{π} – number of pions ($\mu=0$, T_C , T=0).

The scaled variance of neutral pions as function of the total number of pions $(N_{\pi}), \qquad \omega = D / < N_0 >$

[V.V. Begun and M.I. Gorenstein, Phys. Lett. B 653, 190 (2007); Phys. Rev. C 77, 064903 (2008)]

The dashed lines show the GCE for the pion gas as a function of ω temperature *T*. The solid line shows the ω in the TL $V \rightarrow \infty$.

[V.V. Begun and M.I. Gorenstein, Phys. Rev. C 77, 064903 (2008)]

SIMULATION of NEUTRAL PION DETECTION

 $\begin{array}{l} n=N_0/N_{tot} \ , \ n \subset [0,1], \\ \mbox{Scaled multiplicities;} \\ r(N_0,N_{tot})=N_{ev}(N_0,N_{tot})/N_{ev}(N_{tot}), \\ \ probabilities \ at \ fix \ n_{ch}. \\ \ There \ is \ a \ linear \ correlation \\ \ between \ average \ < N_0 > \ and \ N_{\gamma} \end{array}$

Linear correlation between $< N_{\gamma} > and N_0$

Preliminary: 2012

Preliminary: 2012

Preliminary: 2012

M.Boratov et al. Mirabelle Collab. Nucl.Phys. 111(1976) 529.

Preliminary: 2012

BEC FORMATION CONDITIONS

Estimation of the mean energy of pion: $E_{\pi} = (E_{cms} - 2m_N - n_{\pi}m_{\pi})/n_{\pi}$, (1) $E_{p, beam} = 50 \text{ GeV}$, $n_{\pi} = 30 \rightarrow E_{\pi} = 0.12 \text{ GeV}$.

Critical energy of condensation (Landau L.): $E_{crit} = (3,3/g^{2/3})(h^2/m_{\pi})\rho^{2/3}$. (2) If fireball radius, r \approx 3 fm -> ρ , pion gas density: $\rho = 0,2 \text{ fm}^{-3}$, $E_{crit} = 0,1$ (Γ)B, $E_{\pi} \approx E_{crit}$

The max restored π -multiplicity at 50 GeV N_{tot}=36 (N_{ch}=12&&N₀=24). BEC has chance be formed in HM region!

Critical energy & density of pions

CONCLUSIONS

- 1. The mean number of π^0 's in the event is proportional to the number of photons detected in ECal.
- 2. The corrections for VD acceptance, HMT action and data processing efficiency have been taken into account.
- 3. $r_0(n_0)$ is fitted with Gaussian and $\langle n_0 \rangle$, σ and $\omega = D/\langle N_0 \rangle$ are derived. These values are agreed with values received for PYTHIA5.6 code at $N_{tot} \langle 22(FRITIOF, N_{tot} \langle 18)$.
- ω increases at N_{tot} > 22(18), what can indicate to the BEC approaching for the HM pion system in accordance with Gorenstein and Begun predictions.
- 5. This effect have been observed for the first time.
- 6. S. Barshay: Anomaly soft photon yield is stipulated of BEC.

Anomaly soft photon yield

Photon spectrum in hadron jet $e^+e^- \rightarrow Z^0 \rightarrow jet \rightarrow \gamma + X.$ (RD – MC) –photon spectrum without of known particle decay contribution calculated by MC.

The ratio: the intensity of low energy photons to calculated value according to neutral particle number in jet. [Eur.Phys. J. C47 (2006) 273]

Backslides

Table 3. Experimental data: N_{ev} (N_{tot}, N_{ch}, N\gamma)

Ntat	N	_{ab} = 4		6	8		10		12		14		16		18		20		22		24		ΣΝαυ
101	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	Νγ	Nev	·ev
4	0	233164																					233164
5	1	422502																					422502
3	T	422392																					422392
6	2	459512	0	193631																			653143
7	3	360538	1	356215																			716753
0		225720	2	297410	0	117024																	741062
0	4	255720	2	36/419	U	11/924																	/41005
9	5	131634	3	310509	1	220895																	663038
10	6	63900	4	203024	2	240271	0	46371															553565
11	7	20252	5	112470	2	105027	1	00126															425002
11		29252	5	115479	3	195057	T	88130															425905
12	8	13348	6	56553	4	127779	2	95925	0	14598													308202
			~						· · ·														
13	9	4970	7	25997	5	72079	3	77174	1	27805													208026
14	10	2840	8	11869	6	36898	4	50832	2	30726	0	3366											136530
15	11	1420	9	4932	7	17125	5	29301	3	24553	1	6468											83800
16	12	710	10	2555	8	7767	6	15237	4	16371	2	7170	0	639									50449
17	13	426	11	1218	9	3635	7	7224	5	9537	3	5724	1	1227									28991
18	14	284	12	629	10	1718	8	3268	6	4997	4	3904	2	1377	0	110							16287
19	15	142	13	334	11	781.0	9	1681	7	2438	5	2249	3	1081	1	206							8912
20	16	142	14	196	12	440	10	758	8	1186	6	1200	4	772	2	240	0	13.3					4948
21	17	56.8	15	138	13	206	11	351	9	609	7	595	5	437	3	182	1	27.2					2601
22	18	0.0	16	78.6	14	121	12	189	10	259	8	302	6	247	4	130	2	34.4	0	18			1362
23	19	28.4	17	39.3	15	95.8	13	105	11	141	9	160	7	120	5	76.3	3	26.0	1	4.0			796
24	20	0.0	18	19.6	16	59.6	14	49.1	12	75.9	10	80.0	8	69.3	6	45.8	4	18.1	2	47	0	03	422
25	21	0.0	19	15.7	17	29.8	15	49.1	13	40.3	11	39.0	9	38.8	7	20.7	5	11.5	3	37	1	0.7	249
26	22	28.4	20	0.0	18	25.6	16	28.1	10	18.6	12	22.0	10	19.7	, 8	13.1	6	7.2	4	24	2	0.8	166
27		20.4	20	0.0	10	<u> </u>	10	13.3	15	20.1	13	9.0	11	9.6	9	7.8	7	3.1	5	17	3	0.0	71.6
28			21	15.7	20	43	18	10.2	16	8.1	13	5.5	12	<u> </u>	10	3.8	8	2.5	6	0.9	<u> </u>	0.4	57.4
20				15.7	20	+.5 1 4	10	2.5	10	1.9	15	<u> </u>	13	1.5	11	2.6	9	1.9	7	0.7	5	0.4	17.1
30					21	6.4	20	63	18	2.2	16	13	13	0.7	12	1.0	10	1.5	8	0.4	6	0.2	20.3
31					22	0.4	20	1.8	10	0.8	10	0.7	15	1.2	13	0.4	11	0.4	9	0.3	7	0.5	5.6
32					23	1.4	21	2.5	20	4.0	18	0.7	16	0.1	13	0.4	12	0.4	10	0.2	8	0.1	9.0
33						1.7	22	0.0	20	0.3	10	1.0	10	0.1	15	0.1	12	0.5	11	0.2	9	0.1	1.8
33							23	1.8	21	0.3	20	0.8	18	0.2	15	0.2	15	0.1	11	0.0	10	0.3	3.0
35							24	1.0	22	0.5	20	0.0	10	0.0					14	0.1	10	0.7	0.2
35									23	0.0			19	0.5									0.5
JU		1000707		100000		1042000		416717	24	122202		21202	20	0.1		10.40		1 4 7				2.2	0.4
۵ N _{ev}		1960/0/		1008800		1042908		416/1/		133393		31302		6048		1040		147		20.6		3.3	

The dependence of \mathbf{a}_{ij} factors on \mathbf{N}_0 for various \mathbf{N}_{γ} and \mathbf{N}_{ch}

< N_0 > and standard deviation (rms) as function of N_{γ} for various N_{ch} .

Test of EMCal

Prototype of soft photon ECal on CsI(Tl) crystals. Disposition scheme of counter CsI(TI) on its test at SVD-2.

Results of ECal prototype tests:

- 1. We have obtained: the dependence of the angle of emission in c.m.s. from the angle in lab.s.; dependence momentum in lab s. from the angle in lab.s.;
- 2. Conclusion: background loading is high. It is necessary to manufacture calorimeter with passive and active protection (anticoincidence counter environment).
- **3. Barshay S.: Connection with BEC.**

ECal simulation

