Irradiation history and resulting isotope decay scheme influence on yttrium sample gamma activity

<u>S. Kilim</u>¹, M. Bielewicz¹, A. Polanski¹, E. Strugalska-Gola¹, M. Szuta¹, A. Wojciechowski¹, I. Adam², M. Kadykov², V. Pronskikh², S.Tyutyunnikov², V. Wagner³, O.Svoboda³, V.Chilap⁴

- 1. National Centre for Nuclear Research, Otwock-Świerk 05-400, Poland
- 2. Joint Institute for Nuclear Research, 141980 Dubna, Russia
- 3. Nuclear Physics Institute of CAS, 25068 Rez, Czech Republic
- 4. CPTP "Atomenergomash", Moscow, Russia

Yttrium-89 activation reactions taken into account

Reaction	Produced Isotope	T1/2	Reaction Threshold [MeV]	γ-line Energy [keV]	γ-line Intensity [%]
$V_{20}(n, q)$	Voo	3.19h	-6.8570*	202.51	97.3
109(II, <u>y</u>)	190			479.17	90.74
Y89(n,2n)	Y88	106,65d	11.5	898.042	93.7
				1836.063	99.2
Y89(n,3n)	Y87m	13,37h	20.8	380.79	78
	V07	79,8h 20.8	20.9	388.53	82.00
	107		484.805	89.7	
Y89(n,4n)	Y86	14,74h	32.7	1076.64	82.00
Y89(n,5n))/05	2.68h	42.633	231.67	84.00
	COT	4.86h	42.633	231.67	22.8

A typical formula for isotope production rate

$$\frac{N_A \sigma_k}{A} \equiv I_k = \frac{S_{\gamma} \cdot 100}{m \cdot \varepsilon_p \cdot I_{\gamma} \cdot \phi \cdot COI} \cdot \frac{\lambda_k \cdot t_{ir}}{\left(1 - e^{-\lambda \cdot t_{ir}}\right)} \cdot \frac{1}{\left(1 - e^{-\lambda t_{real}}\right)} \cdot \frac{t_{real}}{t_{live}} \cdot e^{\lambda t_+}$$

 N_A – Avogadro's number I_{γ} – correction for gamma line intensity [%]A – sample's gram atom σ_k – reaction channel k cross section σ_k – reaction channel k cross section I_k – isotope k production rate per gram $S\gamma$ – gamma peak area M_k – isotope decay constantm – activation sample mass [g] t_{real} – real time of measurement ε_p – gamma spectrometer efficiency t_{live} – live time of measurement

The formula is based on constant accelerator beam assumption

$$\frac{\lambda_k \cdot t_{ir}}{\left(1 - e^{-\lambda \cdot t_{ir}}\right)} - ce^{-\lambda \cdot t_{ir}}$$

- correction for irradiation time

Irradiation history – constant beam case

$$\varphi_i$$
 - neutrons in pulse *i*
 $\varphi_i = const = \frac{\phi \Delta t}{t_{ir}}$
 $N_k(tir)$ – isotope *k* nuclei at the EoIr

$$N_{k}(t_{ir}) = \frac{mN_{A}\sigma_{k}}{A} \frac{\phi\Delta t}{t_{ir}} \sum_{i=1}^{t_{ir}} e^{-\lambda_{k}(t_{ir}-t_{i})}$$
$$\Rightarrow \frac{mN_{A}\sigma_{k}}{A} \frac{\phi}{t_{ir}} \int_{0}^{t_{ir}} e^{-\lambda_{k}(t_{ir}-t)} dt$$

$$N_{k}(t_{ir}) = \frac{mN_{A}\sigma_{k}}{A} \frac{\phi}{\lambda_{k}t_{ir}} \left(1 - e^{-\lambda_{k}t_{ir}}\right)$$

$$N_k(t_+) = N_k(t_{ir})e^{-\lambda_k t_+}$$

Variable beam case

Here the constant beam approximation can't be applied! Each pulse contribution should be calculated separately.

$$N_{k}(t_{ir}) = \frac{mN_{A}\sigma_{k}}{A} \sum_{i} \varphi_{i} \cdot e^{-\lambda_{k}(t_{ir}-t_{i})}$$

Variable beam case

Fluence t-irr[hh:mm:ss] 3,37E+13 17:31:00

Example irradiation history influence on yttrium isotopes production						
Y88 Y87m Y87 Y86 Y85						
Beam run averaged	1,00	1,00	1,00	1,00	1,00	
Reversed beam run	1,00	1,18	1,03	1,16	1,83	
Real beam run	1,00	0,84	0,97	0,86	0,55	

Irradiation history has negligible effect on Y88 production. For Y86 this effect can't be neglected. Shorter isotope half life time the irradiation history makes larger effect on measured production.

Residual isotope decay scheme effect on production - Y87 example – constant beam case

$$\frac{dN_1}{dt} = \frac{mN_A \sigma_1 \varphi}{A} - \lambda_1 N_1$$
$$\frac{dN_2}{dt} = \frac{mN_A \sigma_2 \varphi}{A} + \lambda_1 N_1 - \lambda_2 N_2 \left| t < t_{irr} \right|$$

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$
$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$$
$$t_+ > t_{irr}$$

Residual isotope decay scheme effect on production - Y87 example – constant beam case

$$\begin{split} \mathcal{N}_{1}(t_{ir}) &= mI_{1} \frac{\phi\left(1 - e^{-\lambda_{1}t_{ir}}\right)}{\lambda_{1}t_{ir}} \\ \mathcal{N}_{2}(t_{ir}) &= mI_{2}\phi \frac{\left(1 - e^{-\lambda_{2}t_{ir}}\right)}{\lambda_{2}t_{ir}} \\ &+ mI_{1}\phi \left[\frac{\left(1 - e^{-\lambda_{2}t_{ir}}\right)}{\lambda_{2}t_{ir}} - \frac{\left(e^{-\lambda_{2}t_{ir}} - e^{-\lambda_{1}t_{ir}}\right)}{\left(\lambda_{1} - \lambda_{2}\right)t_{ir}}\right] \end{split}$$

$$N_{1}(t_{+}) = N_{1}(t_{ir})e^{-\lambda_{1}t_{+}}$$

$$N_{2}(t_{+}) = N_{2}(t_{ir})e^{-\lambda_{2}t}$$

$$+ N_{1}(t_{ir})\frac{\lambda_{1}}{(\lambda_{1} - \lambda_{2})}(e^{-\lambda_{2}t_{+}} - e^{-\lambda_{1}t_{+}})$$

Residual isotope decay scheme effect on production - Y87 example – variable beam case

$$N_{1}(t_{ir}) = mI_{1} \sum_{i=1}^{ir} \varphi_{i} e^{-\lambda_{1}(t_{ir}-t_{i})}$$

$$N_{2}(t_{ir}) = mI_{1} \sum_{i=1}^{ir} \varphi_{i} (1 - e^{-\lambda_{1}(t_{ir}-t_{i})}) e^{-\lambda_{2}(t_{ir}-t_{i})}$$

$$+ mI_{2} \sum_{i=1}^{ir} \varphi_{i} e^{-\lambda_{2}(t_{ir}-t_{i})}$$

$$\begin{split} N_{1}(t_{+}) &= N_{1}(t_{ir})e^{-\lambda_{1}t_{+}} \\ N_{2}(t_{+}) &= N_{2}(t_{ir})e^{-\lambda_{2}t} \\ &+ N_{1}(t_{ir})\frac{\lambda_{1}}{(\lambda_{1} - \lambda_{2})} \left(e^{-\lambda_{2}t_{+}} - e^{-\lambda_{1}t_{+}}\right) \end{split}$$

Experiment by experiment illustration of irradiation history and decay scheme influence on yttrium isotope production final results will follow

Experiment QUINTA 2011-03-5-6 2 GeV

Variable beam to constant beam treatment ratio.					
Y88	88 Y87m Y87 Y86		Y85		
1,00	1,09	1,01	1,08	1,56	

Experiment QUINTA 2011-03-8-9 4 GeV

Y88	Y87m	Y87	Y86	Y85
1,00	1,04	1,01	1,04	0,85

Experiment QUINTA 2011-03-20-21 6 GeV

Y88	Y87m	Y87	Y86	Y85
1,00	1,05	1,01	1,04	1,11

QUINTA experiment 2011-12-14-15 1 GeV

Y88	Y87m	Y87	Y86	Y85
1,00	1,01	1,00	1,01	1,06

QUINTA experiment 2011-12-16-17 4GeV

 Fluence
 3,37E+13

 t-irr[hh:mm:ss]
 17:31:00

Y88	Y87m	Y87	Y86	Y85
1,00	0,84	0,97	0,86	0,55

Conclusions

- In case of resulting isotope produced both directly and in decay chain the effect of decay scheme can be neglected if the measurement starts later than decaying parent isotope half life time.
- In case of variable beam the irradiation history (beam run) effect depends on produced isotope half life time. The effect is large for isotopes with half life time shorter than irradiation time and negligible for isotopes with the longer one. It is recommended, therefore, not to apply or apply with care the constant beam approximation while s a m p l e g a m m a a ctivity working over.

Thank you for attention