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• BS equation for the scattering states
E.E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951)

F (p, p′′, P ) = V inh(p, p′′, P )− i

∫

d4p′

(2π)4

×
V (p, p′, P )F (p′, p′′, P )

[

(

1

2
P + p′

)2
−m2 + iε

] [

(

1

2
P − p′

)2
−m2 + iε

]

Ladder kernel: V (p, p′, P ) = −
g2

(p− p′)2 − µ2 + iε

p – relative 4-momentum (variable).
p′ – integration 4-momentum (variable).
p′′ – physical (relative) 4-momentum.
P – total 4-momentum.

It determines the off-shell amplitude in Minkowski space.

In c.m.-frame ~P = 0: F = F (p0, p; p
′′) depends on

two variables p0, p (for S-wave).

On-mass shell: F on = F (p0 = 0, p = p′′; p′′) = F (p′′)
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• Separable kernel

BS equation was solved, in Minkowski space,

for a separable kernel

V. Burov, S. Bondarenko, E. Rogochaya.

Tjon et al.

Off-mass shell amplitude is found

(and the on-mass shell one – the phase shifts)
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• Ladder kernel – Field theory based kernel

BS equation was solved for the ladder kernel,

by Wick rotation p0 = ip4, i.e., in Euclidean space.

Schwartz and Zemach (1966); Levine, Tjon, Wright (1966);

Haymaker (1967); Maris et al. (2002)

In this way, one obtains the Euclidean amplitude FE(p4, p; p
′′).

On-mass shall: p0 = ip4 = 0, p = p′′.

Hence: F on = FM (p0 = 0, p = p′′; p′′) = FE(p4 = 0, p = p′′; p′′).

Therefore, the Euclidean solution indeed gives

on-shell amplitude – the physical phase shifts.
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However, the BS equation has yet never been

solved for ladder kernel, for the off-shell amplitude

F (p0, p; p
′′) itself which enters this equation.

Why? – Because of singularities.
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We need the

off-shell BS amplitude in Minkowski space

to calculate the transition form factor ed → enp,

or as an input for the three-body BS-Faddeev

equations.

half-off-shell amplitude,
solution of the BS equation

n

p
d

e'e
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• Outline

Solving the scattering BS equation in Minkowski space.

Phase shifts.

Scattering length.

Inelasticity (above threshold).

Off-mass shell amplitude
(main aim of the present work).
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• Methods in Minkowski space

1. Nakanishi integral representation.
Was applied to solution of the bound state problem in

V.A. Karmanov and J. Carbonell, Eur. Phys. J. A27 (2006) 1.

For the scattering states, a formalism is developed in

T. Frederico, G. Salmè, and M. Viviani,

Phys. Rev. D 85 (2012) 036009.

The numerical solution was not yet obtained.

2. Direct and accurate treating of singularities.
–Method we develop in this work.
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• Four sources of singularities

F (p, p′′, P ) = V inh(p, p′′, P )− i

∫

d4p′

(2π)4

× V (p, p′, P )F (p′, p′′, P )
[

(

1
2P + p′

)2 −m2 + iε
] [

(

1
2P − p′

)2 −m2 + iε
]

1. Constituent propagators 1
[

( 1

2
P+p′)

2
−m2+iε

][

( 1

2
P−p′)

2
−m2+iε

]

2. Kernel V (p, p′, P ) = − g2

(p−p′)2−µ2+iε

3. Inhomogeneous term V inh(p, p′′, P ) = − g2

(p−p′′)2−µ2+iε

4. Amplitude F (p′, p′′, P ) itself
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We treat all the singularities in a way which allows to
calculate all the singular integrals numerically.

How?
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• 1. Constituent propagators

In c.m.-frame ~P = 0, P0 ≡
√
s = 2εp′′:

F (p0, p, u; p
′′) = V inh(p0, p, u; p

′′)− i

∫

d3p′

(2π)4

∫ ∞

−∞
dp′0

× V (p0, p, u; p
′
0, p

′, u′)F (p′0, p
′, u′; p′′)

(p′0 − p−0 + iε)(p′0 + p−0 − iε)(p′0 + p+0 − iε)(p′0 − p+0 + iε)

with p+0 = εp′ + εp′′ , p−0 = εp′ − εp′′ .
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Product of four pole terms

1

(p′0 − p−0 − iε)
= PV

1

(p′0 − p−0 )
+ iπδ(p′0 − p−0 )

etc. (for all four products).

∫

dp′dp′0 (PV + iδ) (PV + iδ) (PV + iδ) (PV + iδ)

=

∫

dp′dp′0PV · PV · PV · PV ⇐ 2D integral

+

∫

dp′dp′0PV · PV · PV · δ + . . . ⇐ 1D integral

+

∫

dp′dp′0PV · PV · δ · δ ⇐ 0D integral
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• BS equation for theS-wave amplitude

F0(p0, p; p
′′) = V inh

0 (p0, p; p
′′)

+

∫

∞

0

dp′

εp′

{

i

4εp′′

∫

∞

0

dp′0

(p′20 − p−
0

2
)

[

V s
0 (p0, p; p

′

0, p
′)F0(p

′

0, p
′; p′′)

−V s
0 (p0, p; p

−

0
, p′)F0(|p

−

0
|, p′; p′′)

]

−
i

4εp′′

∫

∞

0

dp′
0

(p′20 − p+
0

2
)

[

V s
0 (p0, p; p

′

0, p
′)F0(p

′

0, p
′; p′′)

−V s
0 (p0, p; p

+

0
, p′)F0(p

+

0
, p′; p′′)

]}

⇐ 2D integral

+

∫

∞

0

dp′

εp′

{

π

8εp′′

1
(

εp′ − εp′′
)

[

V s
0 (p0, p; p

−

0
, p′)F0(|p

−

0
|, p′; p′′)

−
2εp′

(εp′ + εp′′ )
V s
0 (p0, p; p

′

0 = 0, p′ = p′′)F0(p
′

0 = 0, p′ = p′′; p′′)

]

−
π

8εp′′

1
(

εp′ + εp′′
)V s

0 (p0, p; p
+
0
, p′)F0(p

+
0
, p′; p′′)

}

⇐ 1D integral

+
iπ2

8p′′εp′′
V s
0 (p0, p; p

′

0 = 0, p′ = p′′)Fl(p
′

0 = 0, p′ = p′′; p′′) ⇐ 0D
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• 2. S-wave kernel

V0(p0, p, p
′
0, p

′) = −
∫ 1

−1

g2 du

(p0 − p′0)
2 − (p2 − 2p p′ u+ p′2)− µ2 + iε

= −8πm2α

pp′

∫ 1

−1

du

η + u+ iε

= −8παm2

pp′
log

|η + 1|
|η − 1| +

i8παm2

pp′
U(η)

where

α =
g2

16πm2
, η =

(p0 − p′0)
2 − p2 − p′

2 − µ2

2pp′

and

U(η) =







1, if |η| ≤ 1

0, if |η| > 1
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Singularities of kernel

Kernel is singular when η = ±1. That is:

(p0 − p′0)
2 − (p∓ p′)2 − µ2 = 0

–Moving singularities in p′0 = p′0(p
′).

In addition: 4 quadratic equations → 8 singularities.

(p0 − p±0 )
2 − (p± p′)2 − µ2 = 0, p±0 = εp′ ± εp′′

–Fixed singularities in p′.

All of them are log-singularities.
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To improve precision, we integrate numerically

from one singularity to other.

∫ ∞

0

. . . dp′ =

∫ p
sing
1

0

. . . dp′+

∫ p
sing
2

p
sing
1

. . . dp′+

∫ p
sing
3

p
sing
2

. . . dp′+. . .

In this integration we use appropriate change of

variables.
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• 3. Inhomogeneous termV inh

The pole singularity which becomes the log-singularity for
the partial wave.
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• 4. Amplitude F itself

F = V inh + VΠV inh + VΠV inhΠV inh + . . .

Amplitude F contains the singularities of each its iterative term.
The most dangerous ones result from the inhomogeneous term.

Introduce new function f :

F = γV inhf

γ is an arbitrary smooth function.

Inhomogeneous term in the equation for f is smooth.
⇒ f is now also smooth.
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We solve equation for f .

The equation is lengthy,

but now the integrand is smooth, the integrals

are easy computed!

We find numerical solution, decomposing it in the

spline basis.
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• Results for bound states

We reproduce the binding energies found

previously, by other methods.

B(Minkowski space, present solution)

= B(Nakanishi representation)

= B(Euclidean space)

The method works for the bound states!
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• Extracting phase shift

F on = Fl(p0 = 0, p = p′′; p′′) ⇐ on-mass shell

Sl = ei2δl = 1 +
2ip′′F on

εp′′

Or:

δl =
1

2i
log

(

1 +
2ip′′F on

εp′′

)

If s < (2m+ µ)2, δl must be real. That is |Sl| = 1.
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• Tests

Our solution provides the real phase shifts (non-trivial !)

We independently solved the the BS solution in
Euclidean space (and we confirmed Tjon et al.).

Our Minkowski space solution provides the phase shifts
coinciding with ones found via the Euclidean space.
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• Phase shift forα =
g2

16πm2 = 0.5

Precision is better than 0.1%.
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• Phase shift forα = 1.2 (bound state)

Precision is better than 0.1%.
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• Scattering length vs.α
Zero incident energy!
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• Inelasticity

µ = 0.5 → p′′threshold = 0.75
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• Real part of off-shell amplitude

Re[F0(p0, p; p
′′)] vs. p, p0 at p′′ = 0.5, α = 0.5, µ = 0.5.
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• Imaginary part of off-shell amplitude

Im[F (p0, p; p
′′)] vs. p, p0 at p′′ = 0.5, α = 0.5, µ = 0.5.
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For the present, the numerical calculations are carried out
for the S-wave only.

However, no need in the partial wave decomposition.
The corresponding equations are derived.

Their solution is in progress.
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• Conclusions

The BS equation for the scattering states, for the ladder
kernel, is solved in Minkowski space.
The off-mass-shell BS amplitude is calculated for the first
time.

It is needed to calculate the transition form factor and as
an input for the three-body BS-Faddeev equations.

The relativistic phase shifts and the scattering length
considerably differ from the non-relativistic ones.

Two-body amplitude above threshold and corresponding
inelasticity are found.
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