

INSTITUTE FOR HIGH ENERGY PHYSICS (IHEP) Protvino, Moscow Region, 142281, Russia

Light Ions in Accelerator Complex U70 of IHEP

Sergey Ivanov

XXI International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics",

XXI Baldin ISHEPP-2012

September 10-15, 2012, JINR, Dubna, Russia

- Generalities
- Run by run progress since 2008
- Conclusion

Layout

Photo album of machines

September 15, 2012

General

Extracted beams			<i>U</i> 1.5	<i>U</i> 70	
PS U70		<i>Β</i> ρ, Τ·m	0.8 6.9	6.9 233.4	
Experimental Hall		$f_{\rm RF}^{}$, MHz	0.75 2.79	5.52 6.06	
*		P, Torr	2.10-7	5·10 ⁻⁷	
99.16 m : 1483.69 m		<i>N</i> , qpp	2-5·10 ¹¹	2-10·10 ¹²	
1.0025 : 15					
RFQ DTL URAL30 RC PS U1.5 Alvarez DTL /100	In a SIS18, SIS100 name convention: • LIS-233 [T·m] • LIS-6.9 [T·m]				

/100: Alvarez DTL, 0.7—100 (72.7) MeV *p*; 16.7 MeV/u *d*, *C* (@ 4π)

MIHEP

5 of 2

Goal:

- To extend functionality of U70 for applied and fundamental research
- To provide extracted beams of *p* and light ions (*d*, *C*) on a fixed target
- To, thus, convert U70 to an universal hadron accelerator (& storage) ring
- To provide (a.s.a.p.) carbon-beam-therapy compliant beams

Boundary conditions:

- To comply with overall layout limitations of the existing machines (densely packed)
- To be non-invasive, never preclude the existing *p*-program
- To be cost-effective, the utmost use of existing capital equipment
- To implement proven technologies

Consequences:

- In a non-SC synchrotron, feasible vacuum $P > 1-5 \cdot 10^{-8}$ Torr
- Unsuitable optics and no place to assemble collimators to localize beam losses from an intermediate charge-state ion beam
- No place for stripping-foil target assembly for charge-exchange (non-Liouvillean) injection into U70
- No place for any cooling inserts in *U*70 whatsoever
- Prescribed variation range of rigidity $B\rho$ in lattice, and frequency f_{RF} in RF systems
- Technical limitations in /100 at the 4π -mode imposing 1/3 < q/A < 1/2

6 of

Fully stripped (bare) ions, q = ZCharge-to-mass ratio q/A = 1/2

Reference ions:	
• ¹ H ¹⁺	protons, <i>p</i>
• ² H ¹⁺	deuterons, d
• ¹² C ⁶⁺ (¹² C ⁵⁺)	carbon

Why light ions? To be on the safe side w.r.t.:

- Coulomb betatron tune shift,
- MCS on residual gas,
- Ionization losses on residual gas,
- IBS,
- e-capture (recombination) on residual gas,
- e-stripping on residual gas

 $N_{\rm B} \propto (B\rho)^2/\beta A$ $d\epsilon/dt \propto P/(B\rho)^2\beta$ $d\ln p/dt \propto -Pq/B\rho\beta^2$ $\tau \propto (B\rho)^2/N_{\rm B}\beta q^2$ $\sigma \propto \beta^3 q^2/T^{-17/4}$ loss channel closed

7 of 23

Prospects of going to heavier ions will be assessed later with more experimental data at hands

September 15, 2012

Strategy

Incremental:

- ion species
- along cascade

intensity [qpp]

p - d - C[/100 - BTL] - U1.5 - BTL - U70 flat bottom circulation (DC PSU, RMG) - U70 fixed-field variable-RF acceleration - U70 transition crossing – U70 ramping to flattop field 1 - 1/10 - 1/50 & low-N pilot p-beams prior to d, C-beams

							-	• · · · · · · · · · · · · · · · · · · ·
Reference ions		/100, 2 cav of 3		U1.5		U70		
q = Z, q/A = 1/2		IN	OUT	IN	OUT	IN	OUT	
<i>p, <mark>pilot</mark> beam</i>	β		0.3724		0.9000		0.9999	
	<i>Β</i> ρ, Τ·m		1.2558		6.8659		233.38	49 0
	<i>T</i> , MeV		72.71		1 323.8		69 032	
d	β		0.1862		0.7392		0.9996	
	<i>Β</i> ρ, Τ·m		1.1856		6.8659		233.38	23 6
	<i>T</i> , MeV/u		16.691		454.56		34 057	
С	β		0.18	362	0.7	'414	0.9996	
	<i>Β</i> ρ, Τ·m		1.17	776	6.8	3659	233.38	24.134 1
	T, MeV/u		16.6	678	45	6.53	34 063	HFP
eptember 15, 2012		Х	XI Baldir	ISHEP	P-2012		8 of 23	

Prehistory @ /100 & U1.5

Prehistory @ U70

 1^{st} MD of 2008: beam test with a stand-alone DC power supply unit for the U70 ring magnet

Goal:

- cheap MD runs (1.32 GeV *p*, 0.45 GeV/u *d*, C) 130 A 20kW;
- storage/stretcher ring for light ions 450-5 MeV/u;
- applied & medical applications of intermediate-energy C beams
- an 'ad hoc' 350 m long BTL form U1.5 to the Experimental Hall

Run 2008-2

September 15, 2012

10–12.12.08; *d*; 16.7–455 MeV/u, 2nd time in record of service

U70 Preparatory activity:

- 1. Standalone DC PSU (131.1 A) of ring magnet
- 2. Coasting *p* @1.32 GeV (354 Gauss)
- 3. Injection of *p* under RF off
- 4. Imitation of low-*N d*-bunch, 3.10¹⁰ ppb
- 5. Settling issued DC CT...

d in U70 after 4 bending magnets of 120, sc screen in SS#10

1st ever light-ion (*d*) beam in the U70

MIHEP

11 of 23

Run 2009-1 (1)

/100: *d*, 16.7 MeV/u (16–17 mA; 40 μ s) \rightarrow (15 mA; 5 µs)

Impoved beam diagnostics, compare with

Reserves in matcing BTL /100/U1.5 (beam envelopes)

Run 2009-1 (2)

September 15, 2012 XXI Baldin ISHEPP-2012

Run 2009-2 (1)

*I***100**: *d*, 16.7 MeV/u Smooth operation Idle time = 0 ca

September 15, 2012

U1.5: d, 16.7 – 448.6 MeV/u Problems with RF capture Low intensity < 10¹⁰ dpb (by the way, it is C-beam would-be intensity) Frequent failures with transfer synchronization

Run 2009-2 (2)

U70: 8 of 40 RF cavities set back to factory defaults

New digital MO

DC stand-alone PSU

Long lasting circulation of azimuthally uniform and **bunched** *d* beams

PHASOTRON FIXED-FIELD ACCELERATION OF DEUTERONS

RF +10 kHz (smoothly) whence +3.8 MeV per nucleon followed by beam loss at chamber outer wall

Run 2010-1

/100-U1.5-U70: Huge scope of preliminary work -- DDS MO, technological feedbacks (gain $\times 20$ & SNR), beam diagnostics (DCCT), transfer synch, pilot low-intensity *p*-bunch *with* $N = 10^{10}$, RF system in *U*1.5 etc

April 27, 2010 Deuterons were accelerated 23.6 GeV/u in the U70 (flattop 8441 Gs)

September 15, 2012

XXI Baldin ISHEPP-2012

IHEP

16 of 23

Run 2010-2

December 8, 2010. Carbon ions were accelerated to 455.4 MeV/u in the U1.5 and committed 1st turns around the U70 at flat-bottom

17 of 23

September 15, 2012

April 24, 2011. Carbon ions were accelerated to top available 34.1 GeV/u in the U70, 5.10⁹ ipb

September 15, 2012

XXI Baldin ISHEPP-2012

18 of 23

Run 2011-1 (B)

September 15, 2012

Run 2011-2

 ± 60 ns. $\pm 1.9 \cdot 10^{-3}$, parano[ic bumch

EBT2 foil, 3 cycles

September 15, 2012

Run 2012-1 (A)

April 24, 2012. C 24.1 GeV/u (flattop 0.859 T) 5.10⁹ ipp (8 s).

September 15, 2012

Run 2012-1 (B)

Accelerator complex *U*70 of IHEP-Protvino:

• important (POP) milestones of light-ion program are accomplished

• *U*70 is on a way towards routine acceleration abd extraction of light-ions (C) to 24-34 GeV per nucleon for high-energy nuclear physics

 now has slow extraction of 450-5 MeV per nucleon of ¹²C⁶⁺ beam at U70 flat-bottom (a beam stretcher mode)

• both U1.5 and U70 are now not only proton but (light-) ion synchrotrons as well

 plans for runs 2012-2 and further foresee operation with HE and IE C ions, assembly of BTL#25, purchasing a new DC PSU, tests of C beam decceleration, etc

MIHFP

23 of 73

• light-ion program of IHEP-Protvino proceeds at a good (affordable) pace

September 15, 2012 XXI Baldin ISHEPP-2012