Participants:

- ¹ Joint Institute of Power and Nuclear Research-Sosny Minsk, Republic of Belarus
- ² National Scientific Center Kharkov
 Institute of Physics and Technology
 Kharkov Republic of Ukraine
- ³ Joint Institute for Nuclear Research, Dubna, Russian Federation
- ⁴ CPTP "Atomenergomash", Moscow, Russian Federation

Spatial distribution of natural U fission rate in KVINTA subcritical assembly irradiated by 1, 4 and 8 GeV deuteron's beams

K. Husak ¹, I. Zhuk ¹, V. Voronko ², S. Tyutyunnikov ³, V. Sotnikov ², A. Safronava ¹,
M. Artyushenko², A. Patapenka ¹, M. Kadykov ³, V Chilap ⁴, A. Chinenov

-natural uranium fission number spatial distribution in KVINTA subcritical assembly;

Compare total fission number of natural U with results of earlier experiments.

Experimental assembly "QUINTA"

The experimental assembly "QUINTA" consists of a 5 uranium sections with total mass of uranium 512.56 kg.

Uranium foils + SSND (lavsan)

Description of uranium foils positions

Section №1

04

Sections №2,3,4,5

Detector plates

Location of the detector plate between sections

The scheme of sandwiches ^{nat}U- lavsan location on the detector plate, used in the experiment. Each plate had 5 positions at different distances from the longitudinal symmetry axis of the target

R = 120 mm• 4 R = 80 mm• 3 • 2 R = 40 mm $\mathbf{R} = \mathbf{0}$ • 1 R = -80 mm• 5

Description of uranium foils positions $"U_{ZR}"$

Z:

R :

0 - Z = 0 1 - Z = 122.5 mm 2 - Z = 245 mm 3 - Z = 367.5 mm 4 - Z = 490 mm5 - Z = 612.5 mm

1 - R = 0 2 - R = 40 mm 3 - R = 80 mm 4 - R = 120 mm5 - R = 80 mm

5 - R = -80 mm

	0	122.5	245	367.5	490	612.5
120	U ₀₄	U ₁₄	U ₂₄	U ₃₄	U ₄₄	U ₅₄
80	U ₀₃	U ₁₃	U ₂₃	U ₃₃	U ₄₃	U ₅₃
40	U ₀₂	U ₁₂	U ₂₂	U ₃₂	U ₄₂	U ₅₂
0		U ₁₁	U ₂₁	U ₃₁	U ₄₁	U ₅₁
-80	U ₀₅	U ₁₅	U ₂₅	U ₃₅	U ₄₅	U ₅₅

Deuterons total intensity

	Deuterons' Energy, GeV	Activation detectors' irradiation time	Deuterons total intensity
December 2011	1	start: 14.12.11 17 ³⁹ finish: 15.12.11 08 ⁰⁵	1.47·10 ¹³
	4	start: 16.12.11 19 ⁵⁷ finish: 17.12.11 08 ²¹	1.96·10 ¹³
	8	start: 19.12.11 00 ⁵⁹ finish: 19.12.11 05 ¹⁰ (only fission from SSNTD)	6.3·10 ¹⁰ (определено по ИК)
March 2012	1	start: 10.03.12 16 ⁰⁴ finish: 10.03.12 21 ⁰⁰	1.9·10 ¹³
	4	start: 15.03.12 00 ¹⁸ finish: 15.03.12 09 ¹⁰	2.7.1013
	8	start: 19.03.12 06 ²⁶ finish: 19.03.12 15 ²⁷	3.7·10 ¹²

Irregularity of fissile material in KVINTA

Monte-Carlo calculation

Calculation procedure:
1. neutron field is symmetrical with respect to principal axis
2. accounting of geometry fissile material spatial arrangement

Natural U fission rate. E=1 GeV

On figure distribution on an assembly axis (RZ) is shown

December 2011 $I_{tot} = 1.96 \cdot 10^{13}$

Natural U fission rate. E=4 GeV

On figure distribution on an assembly axis (RZ) is shown

December 2011 $I_{tot}=6.3\cdot10^{10}$

Natural U fission rate. E=8 GeV

On figure distribution on an assembly axis (RZ) is shown

Number fission of natural U in KVINTA. E=1 GeV

Number fission of natural U in KVINTA. E=8 GeV

Total number fission of natural U in KVINTA

Conclusions:

Obtain experimental distributions of natural uranium fission rate and natural uranium fission number in KVINTA subcritical assembly irradiated 1, 4, 8 Gev deuteron's beams; Total fission number of natural U, calculated per a deuteron and per 1 GeV energy of the deuteron, compared with results of RunMarch-2011 and RunDecember -2011. It does not depend on the primal energy of the deuteron beam.

