Measuring the Phase between Strong and EM J/y Decay Amplitudes

Marco Destefanis

Università degli Studi di Torino

on behalf of the BESIII Collaboration

XXI International Baldin Seminar on High Energy Physics Problems *Relativistic Nuclear Physics & Quantum Chromodynamics* September 10-15, 2012

Overview

- BESIII experiment
 - Motivation
- Investigated processes
 - Energy points
 - Required Luminosity
 - Summary

The BESIII Experiment @ IHEP

BEijing Spectrometer III

ete collisions

D.M. Asner et al, Physics at BES-III, arXiv:0809.1869v1 [hep-ex] (2008)

BEPCII Storage Rings

BESIII Detector

J/ψ Strong and Electromagnetic Decay Amplitudes

[1] J. Bolz and P. Kroll, WU B 95-35.
[2] S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987).

J/w Strong and Electromagnetic Decay Amplitudes

- If both real, they must interfere ($\Phi_p \sim 0^{\circ}/180^{\circ}$)
- On the contrary $\Phi_{p} \sim 90^{\circ} \rightarrow \text{No interference}$ $J/\psi \rightarrow NN (\frac{1}{2^{+1}}) \Phi_{p} = 89^{\circ} \pm 15^{\circ} [1]; 89^{\circ} \pm 9^{\circ} [2]$ $J/\psi \rightarrow VP (1^{-}0^{-}) \Phi_{p} = 106^{\circ} \pm 10^{\circ} [3]$ $J/\psi \rightarrow PP (0^{-}0^{-}) \Phi_{p} = 89.6^{\circ} \pm 9.9^{\circ} [4]$ $J/\psi \rightarrow VV (1^{-}1^{-}) \Phi_{p} = 138^{\circ} \pm 37^{\circ} [4]$
- Results are model dependent
- Model independent test:

interference with the non resonant continuum

[1] R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998) [2] J.M. Bian et al., $J/\psi \rightarrow$ ppbar and $J/\psi \rightarrow$ nnbar measurement by BESIII, to be published on PRD [3] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990).₇ [4] M. Suzuki et al., Phys. Rev. D60, 051501 (1999). J/ψ Strong and Electromagnetic Decay Amplitudes $J/\psi \rightarrow N\overline{N}$

Favoured channel

3g match 3qq pairs

Without EM contribution p = n, due to isospin

EM contribution amplitudes have opposite sign, like magnetic moments

 BR_{nn} expected ~ $\frac{1}{2}$ BR_{pp}

$$R = \frac{Br(J/\psi \to n\overline{n})}{Br(J/\psi \to p\overline{p})} = \left| \frac{A_{3g} + A_{\gamma}^{n}}{A_{3g} + A_{\gamma}^{p}} \right|^{2} \qquad \begin{array}{c} A_{3g}, A_{\gamma} \in \Re & \mathsf{R} < 1\\ A_{3g} \perp A_{\gamma} & \mathsf{R} \approx 1 \end{array}$$

But the BR are almost equal according to BESIII^[1]:

BR(J/ $\psi \rightarrow p\bar{p}$) = (2.112 ± 0.004 ± 0.027)·10⁻³

BR(J/ $\psi \rightarrow n\bar{n}$) = (2.07 ± 0.01 ± 0.14)·10⁻³

Suggests 90° phase

[1] J.M. Bian, $J/\psi \rightarrow$ ppbar and $J/\psi \rightarrow$ nnbar measurement by BESIII, to be published on PRD

Was an Interference Already Seen?

Yes

without the strong contribution

J.Z. Bai et al., Phys. Lett. B 355, 374-380 (1995)

Investigated Processes

Inclusive scenario: does not see anything The phase is there, but the mean goes to 0

Interference $\propto \langle f | 3g \rangle^* \langle f | \gamma \rangle$

Sum over all the final states $\sum \langle 3g \,|\, f \rangle \! \langle f \,|\, \gamma \rangle$

Closure approximation \sum

$$\sum |f\rangle \langle f| \approx 1$$

But $\langle 3g | \gamma \rangle \cong 0$ orthogonal states

If we sum over all the channels, the interference ≈ 0

Investigated Processes

> Exclusive scenario: could see interference effects NN • $e^+e^+ \rightarrow J/\psi \rightarrow p\bar{p}$, $n\bar{n}$ BR ~ 2.17x10⁻³ $\sigma_{cont} \sim 11 \text{ pb}$ • $e^+e^- \rightarrow J/\psi \rightarrow \rho\pi$ VP BR ~ 1.69% $\sigma_{cont} \sim 20 \text{ pb}$ • $e^+e^- \rightarrow J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$ BR ~ 5.5% $\sigma_{cont} \sim 500 \text{ pb}$

Investigated Processes

Exclusive scenario: could see interference effects also on

- e⁺e⁻ -> J/ψ -> π⁺π⁻
- e⁺e⁻ -> J/ψ -> K⁺K⁻
- $e^+e^- \rightarrow J/\psi \rightarrow K^0\overline{K}^0$

proposed and under study ^[1]

All the other channels for free

Even number of π : strong decay forbidden

-> interference must be seen

[1] H. Czyz, and J. Kühn, Phys. Rev. D80: 034035 (2009)

Continuum Cross Section

V. Druzhinin et al., Rev. Mod. Phys. 83, 1545 (2011) ; B. Aubert et al., Phys. Rev. D73,012005 (2006)

[qd] ^{dd} 70

50

30

20

Phase Generator

- Event generator
- Monte-Carlo method (100000 iterations)
- Cross section evaluation at each point
- Beam spread gaussian (0.93 MeV)
- Radiative correction (simple model to be optimized)
- Max radiation 300 MeV (~20% E_{CM})
- Cross section:

$$\sigma[nb] = 12\pi B_{in} B_{out} \left[\frac{\hbar c}{W}\right]^2 \cdot 10^7 \cdot \left| -\frac{C_1 + C_2 e^{i\varphi}}{W - W_{ris} + i\Gamma_{ris}/2} + C_3 e^{i\varphi} \right|^2$$

Simulated Yields for e⁺e⁻-> pp

continuum reference $\sigma \sim 11 \text{ pb}$

Phase Sign

Mass [MeV/c^2]

Mass [MeV/c^2]

 Depends on the process
 Maximum interference: 0°
 2 pts at low W fix the continuum fix the slope
 2 pts at deep positions
 1 pt Beginning of the BW

Rate

What happens at 90°

Gradient calculation $(\sigma_{90}-\sigma_i)/\sigma_{90}$

The deep corresponds roughly to the maximum gradient

3050 MeV

3060 MeV

3083 MeV

3090 MeV

3093 MeV

Luminosity Hypothesis

- 5 values of Luminosity: 8.6.10³¹, 10³², 2.10³², 5.10³², 10³³ [cm⁻²s⁻¹]
- Time: 1 day = 86400 s
- Injection efficiency = 0.8
- Reconstruction efficiency

pp = 0.67 ρπ = 0.38 5π = 0.20

• Rate =
$$L \cdot T \cdot \varepsilon_{inj} \cdot \varepsilon_{rec} \cdot \sigma$$

Integrated Luminosity L_{int}/day = L • T • ε_{inj} 6 • 10³⁶, 6.9 • 10³⁶, 1.4 • 10³⁷, 3.5 • 10³⁷, 6.9 • 10³⁷ [cm⁻²]

Fit procedure

Fit procedure

Fit done with Monte-Carlo method

Precision of the Fit

Statistical error for:ppcirclepπtriangle

---- 10° ---- 90° 2 parameters: φ and σ_{cont}

170°

Lower sensitivity

(No 0°-90° and 90°-180° symmetry)

Fit results

5 days L_{int} = 1.4×10³⁷ [cm⁻²] points: 3050,3060, 3083,3090, 3093 MeV

 $\boldsymbol{\ell}_1:\boldsymbol{\ell}_1:\boldsymbol{\ell}_2:\boldsymbol{\ell}_2:\boldsymbol{\ell}_1$

Statistical error: pp circle pπ triangle

Open points: 1:1:0.5:0.5:2

Very low sensitivity to Luminosity ratios Best and simplest choice: 1:1:1:1:1

J/ψ Scan

$$\Delta \varphi = +90^{\circ}$$

2 parameters: φ and σ_{cont}

$$\sigma_{\rm cont} = 11 \, \rm pb$$

 $B_{out} = 2.17 \cdot 10^{-3}$

Points	Par	Inj. eff.	Δφ [°]	Δσ [pb]	ΔB _{out}
5	2	0.7	6.0	1.0	1
5	2	0.8	5.6	0.9	1
12	2	0.7	6.3	0.9	1
12	2	0.8	5.9	0.9	1

2 parameters: better the 5 points of the phase

J/ψ Scan

$$\Delta \varphi = +90^{\circ}$$

$$\sigma_{\rm cont}$$
 = 11 pb

 $B_{out} = 2.17 \cdot 10^{-3}$

Points	Par	Inj. eff.	Δφ [°]	Δσ [pb]	ΔB _{out}
5	3	0.7	29.3	1.3	0.7•10 ⁻³
5	3	0.8	26.7	1.3	0.7•10-3
6	3	0.8	6.1	0.9	0.4•10 ⁻⁵
12	3	0.7	6.3	0.9	0.7•10-4
12	3	0.8	5.9	0.9	0.7•10-4

3 parameters: 3096.9 needed

(1 point more with high statistics)

J/ψ Phase

Energy [MeV]	L [cm ⁻² s ⁻¹]	Inj. Eff.	Time	L _{int} [pb ⁻¹]
3050	2•10 ³²	0.80	24 h	13.824
3060	2•10 ³²	0.80	24 h	13.824
3083	2•10 ³²	0.80	24 h	13.824
3090	2•10 ³²	0.80	24 h	13.824
3093	2•10 ³²	0.80	24 h	13.824
Σ			5 days	~ 70 ₃₁

J/ψ Phase

Energy requested [MeV]	Energy collected [MeV]	L _{int} [pb ⁻¹]	
3050	3046	14.0	
3060	3056	AP 14.0	
3083	3086	16.5	
3090	3085	14.0	
3093	3088	14.0	
3097	3097	79.6 3	

Summary

- J/ ψ decay amplitude phase: 0° (theory) but 90° (data)
- Energy points choice: 3050, 3060, 3083, 3090, 3093
- Energy points collected: 3046, 3056, 3086, 3085, 3088
- Phase sign cannot be disentangled
- Fit routine (3 parameters)
- Statistical significance enough to discriminate between different theoretical predictions
- Precision of fit \rightarrow Luminosity dependence
- More Luminosity better than more data points
- Best choice: 1:1:1:1:1

Next Steps

Analyze the real data collected in the 2012 run