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Self-similarity & z-Scaling

High-p; inclusive particle spectra is described

I.Zborovsky
Yu. Panebrat I 1 I I
L anebrasey by dimensionless functioii depending
G.Skoro on single dimensionless variakie
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Energy, angular independenceifiz) and power law'(z) ~ zP over a widez-range.

It indicates on self-similarity of hadron productianvarious scales.
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Self-similarity & Fluctuation& Intermittency

%’m ' S Intermittency: abnormal events with largaultiplicity
i 1 - *p fluctuationwere observed in h-h interaction.

80 |- 23% B NA22: dy=0.1, dN/dy=100, dN/dy/ <dN/dy= 60

60} = . .

CERN Observable fluctuations are dynamical and
o } reflects self-similarity of interaction
BialasA. // Nucl. Phys. 1986 B273, p.703

0 []'" o] Hwa R. // Phys.Rev. 1990. D41, p.1456
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Self-similarity & Fractality& Multiple production

Fo(3y) ~ ©@y)«9), G(y) ~ ©y) T@, ¥(z) ~z?P
Power Laws established experimentally, and characterizingsaiflarity of particles production
on different scalesretypical for fractals
Fractal is the self-similar object withonintegral (fractal) dimension
Fractal dimension is the valueD_ which provides the finite limit

Dr —
lim ZI const

i=1
N - is number oprobeswith sizel, < & covering the object
Relationship of fractal and multiple production :i,.';‘{-'i -y
ol o ¢.- .,.A ’.‘.‘_.‘,-(.
Power Law exponent T1(q) ® Set of hadrons produced in inelastic "".\ N TR\ Y ..-;
_ interaction are set of points of the three -4, R o - 2T \ g e
(Intermittency: G(dy) ~ ©y) @)  dimensional phase-space.§uo) oA . ¥ 3 & e
defines ® The distribution of points in phase-space is ':" e & o] S g
non-uniformly and is determined by the v ! ',_.o’__. /e,
- [N
spectrum of fractal dimensions process of particle production z‘ . =
(generalized fractal dimension)® Set of these points in the phase-space are S —
considered as a fractal and characterized by ~o', = 4=
D(a) = t(a)/(a-1 the fractal dimension, which depends on o .\ T Des™
() =t(a)/(a-1) interaction dynamics Cee et

Determination of fractal dimensions is important
for reconstruction of interaction dynamics
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Scenario of Parton Shower and Hadronization

4 Fractal dimension D
N, 12 2 4 2 4 4 8 N,
3 [ 125 II I I I I I . 8 = 27 particles . N D i
lim > 1>F = const
50 =
) 2 4 = 4 partons =1
a De De _
- 2 = 2 partons (]/5) T (2/ 5) _ 1
“ D. =0.5639..
u g | | | | | | . Box dimension
6 -4 2 0 2 4 6 8
Fractal with dependent partition of parts " D, = —lim In N(9)
5-0 ()

> Outgoing from hard process parton branehba

> 0+- admissible opening angle D, =In3/In5=0.6826..

o n=-In(tg(d/2))
Black rectangles —permissible ranges Power L aw

> The range (consisting of two parts) is considered N =N°®
as uniform object (dependent parts). r >

s=In2/In5=0.4307...
» Further branching and hadronization keeps spatialtstielc /
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Models of Fractals Formation

Fractalswith dependent partition:
permissible range consisting of several parts
are divided as uniform object (dependently)

Fractalswith independent partition:
permissible ranges consist of one part and
are divided independently

D. =D, for fractal with dependent partition of parts
D= D, for fractal with independent partition of parts
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Goal& Problems of fractal analysis

» Goal: find the fractal dimension for
classification events

»But: to do It correctly we must knothe type
of the fractal and number of parts at first level

» Possible solution:

try a set of fractal coverage and fractal types
and choose the best one

Introduce the createria: how good the fractal
fit of the data

I
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Comparison of existing methods

e Data of analysis

e description of the methods
BoxCounting
P-adic Coverages methods
SePaUnethod

 Results and Summary

I
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Data& Analysis

» 437 fractalswith dependent partition:
All possible variants of fractals with number of{saat first level P=4+8

»  T774Fractalswith Independent partition:
All possible variants of fractals with number offgaat first level P=3+8

Efficiency of reconstruction of Dg, N, P

Eff, =1-|Err,| if |Err, <1
Effv =0 if |Errv |>]_ V= DF’NIev’ P Errv = (Vtest _V)/Vt&st

Effe, = Effy [Eff, [Eff,
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BC, PaCMethods of Reconstruction of Fractal dimendipn

Box Counting (BC) & P-adic Coverages (PaC)

1. Read out data {X =n, py, ...} of particles in events

. . B.B.Mandelbrot
2. Construction of P-adic Coverages The Fractal Geometry
Each coverage is a set of distributions of variable of Nature
. . . DT, M.Tokarev
The number of bins Mn distributions of set Phys.Part.Nucl. Lett.
8 (2011) 521

are changed as degreebefsis HM,=(P))
BC: as a rule P=2PaCP=2,
3. Countingnumber of non-zero bins

P):
Saturation condition N(lev,P)=N(lev+1,P) defines

number of level§N, = lev

lev

4. Findingthe slope parametdd. andy? of dependence
of InNvs. InM for each P-adic coverage

5. Accuracy conditiorg?(P) <

the set of particles is fractal( P and D(P) )

BC has one parameteg?; .
PaC has two parameters,; R x?

lim
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SePa(Methods of definition of fractal dimensidn

Systems of the Equations of P-adic Cover age (SePaC)

1. Read out data {n; } of particles in event

2. Construction ofP-adic CoveragesE?:S Py Pt ool Lett

3. Countingnumber of non-zero birfd(lev,P):saturation condition S(2011) 552
N(lev,P)=N(lev+1,P) defines number of levélg = lev

4. Analysisof system of the equations for verification loypothesis

(independent/dependent partition):

|\Ilev
lev
- Construction system of the equations for all levels Z (dIeV)DF =1
Ny @and g., - number of and long permissible ranges for eacbllev -
- Finding solution D/'® by a dichotomy method for each level
I\Ilev
. . lev _ | |
- Defining average value (DEY) = ZD'EV/N|eV and deviation ADg" =|(Dg") — D¢ |
lev=1

- Accuracy condition  AD set of particles is fractal (P and R=<D/e%)

SePaC has two parameters,z PDev
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ParameteP, ., of PaC SePaC

0.09

Sear ch procedur e of maximum P-adic Coverage P, o_oagi Indep
1. Construction of B, N, Pdistributions for different P at allx?,, < coet
2. Calculationof functionAD,, (P,,,,) Of a diffe_rence of distributions © EZE§§:
for V=D, N, P L pin oot UL \’L L

ADy (PMaX ) = Z |ai _bil 0 02 04 06 08 1
i=1 Pr

g and b— bin contents for adjacent distributionsy,{ P and P+1) Indep
3. Calculationof extended functiomADg(Py.) - pac
ADgxt (Fviax) =ADp. (Fviax) +ADN,, (Aviax) * ADp (Fviax)

Preliminary analysis and result L e
Comparison of dependenckB, (Py.) and Eff,;(Pyas) _ e
The plateau\D, (P,,.,) corresponds to the maximum Ef{(P,,..) P

Eu- 0-6 _ Indep
4. Py is definedas the minimum value on a plateau\@i, (P, ..) °4r rac
Search procedure of optimal value parametgr O st
IS developed for PaC and SePaC methods e
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Parameter?, ., of BC, PaC

Sear ch procedure of parameter leim
1. Construction of D, N, P distributiondor differentx?,, at optimal B,
2. Calculation of functiom\D,, (x?;,, ) of a difference of distributions =N,
for V=D, N, P. AD, (Xim) = D la —b |
a and b— bin content for adjacent distributiorx?(,, = X% andx2,,) =
3. Calculation extended functionD, (X% )
ADe (Xim) = ADp, (Xim) + Dy, (Xim) + A5 (X )
4. Choice of %, is deremined by preliminary analysis results:
comparison ofAD¢, (X%, ) and Ef{(x3,, ) dependences

Correspondence of numbey,, and valuex?,

NXZ,., 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X2, 1013 1012 101 | 100 | 109 108 107 106 | 105 | 104 10° 0.01 | 002 | 003]| 004
NXZ,., 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
X2 0.05 0.06 0.07 | 008| 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.y 08

NX2,., 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
X2 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2, 2]
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Choicey?,, for BC

»  The first plateau oAD., (NX3..) ~
zero value Eff., Eff, and Eff,

»  The first peak oADg,(Nx%.,) ~
the first is not zero value Eff, Eff,

»  The second peak oD (Nx%. ) ~
rapid growth Effe, Eff,

»  The second plateau afD, (NX3..) ~

1 F s the maximum Eff., Eff;
- F
0.8 - Dep , . .
- BC X4im 1S defined as the minimum value on a second plates
= 0.6 [ of ADg,(NX?im )
0.4 -
i P
0.2 | Search procedure of optimal valy®, ., parameter
o F IS developed for BC methods
05 10|15 20 25 30 35 40 45
NG
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Choicey? ., for PaC

» The first plateau oADg, (N2, ) ~
small value Eff., Eff; and Eff,

» The first peak ofAD_ (NX2.,) ~
rapid growth Eff, Eff; and Eff,

» The second peak @D (NX% ) ~
rapid decrease Efaind Eff,

» The range between peaksAD., (Nx2: ) ~
max Eff, and Ef{,,

» The second plateau 6D, (Nx2, ) ~
max Eff,.

og [ PaC X2im IS defined as the minimum value between peaks
h: rff of ADg,(NX3;, ) for determinatior® andN,
j—l_lL.H

>° _ XZim IS defined as the minimum value on a second plate:

0.4 - 1 of ADg,(NX?;,, ) for determinatiord

0.2 | I

o b Search procedure of optimal valg®,, parameter
0 5 1d 15 od 55 30 35 40 45 is developed for PaC methods

N%:z

Lim

Eff
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ParameterDev of SePaC

Search procedure of deviation from an aveiage 2 Dep
1. Construction R, N,,,, P distributiondor differentDev at optimum B~ & '°F o
2. Calculation functiomD,, (Dey;,..,) of a difference of distributions A 1
for each V=03, N, P =Ny, 05
here aand b— bin content for adjacent distributionPv (P&V) = ;l 3 -b| 0 .-----..-.
3. Calculation extended functionDg,(Dev, ) 0" s 0 5 2w
AD, (Dev) =AD, (Dev)+AD,, (Dev)+AD,(Dev) e
Preliminary analysis and result F
Compatrition of features of dependenads., (Dev) and Eff,(Dev) : B 0'6;_
Negligible change oADg, (Dev) ~ negligible change of Eff : oep
4. Dev is defined asany value in the range ¥#0-0.9 0 SepaC
Correspondence of numbey, and valueDev A Ij:e
Npey 1 2 3 4 5 6 7 8 9 10 11 12 13
Dev 10° 10° 104 2-10* 5-104 103 2:10° 5-103 10?2 0.02 0.03 0.04 0.05
Npey 14 15 16 17 18 19 20 21 22 23 24 25 26
Dev 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.p 0.6
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Comparison ofBC, PaC SePaCmethods

Fractals with independent partition
Efficiency for optimal values of parameters

Method Effe Eff yiev Eff, Effe % event % event % event
Errpe<0.5% Erry e,<0.5% Err<0.5%
BC 90.1% 0% 28.1% 0.3% 16% 0% 0%
PaC 99.4% 100% | 99.2% 98.6% 93% 100% 97%
SePaC 99.4% 100%|  99.2% 98.6% 93% 100% 97%

>  BC: Effy)r=90 %
D. is precisely restored for small number of events (16%)
N, ., and P are not precisely restored
»  PaC and SePaC: restoration ¢f N, P with high efficiency (99-100 %)
De N .., P is precisely restored for large number of evergsl(#%)

Levs

PaC and SePaC methods have advantage
In the analysis of fractals with independent paniti

I L rree— %
T Dedovicl IRSHEPP X¥XXI Diibn: 201° e N




Comparison ofBC, PaC SePaCmethods

Fractals with dependent partition
Efficiency for optimal values of parameters
Method Effe Effyiey Eff, Effe % event % event % event
Erry<0.5% Erry ,<0.5% Err<0.5%
BC 85% 0% 0% 0% 2.5% 0% 0%
PaC 86% 65% 61% 29% 1.5% 43% 26%
SePaC 91% 91% 91% 4% 89% 90% 90%

» BC: Eff;z=85%
D¢ is precisely restored for very small number of es€g.5%)
N ., and P are not restored

» PaC: Eff-~86 %, Eff,.,~65 % and Eff=~ 61%
D. is precisely restored for very small number of es€h.5%)

»  SePaC: restoration of-DN, ., P with high efficiency 91 %

De, N, ., P are precisely restored for large number of ev/g8-90%)

SePaC has advantage in the analysis of fractals wigndep partition

T Dedovicl
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Summary

» The analysis of fractal (with independent and depeinghartition)

restoration by BC, PaC and SePaC methods was performed
» Search procedure of optimal values of paramegérs, P.,, Dev
for determination of fractal dimensid@pn., number of level$\
and basé for these methods was developed.

Lev?

» Comparison of BC, PaC and SePaC methods shown agesnbf
PaC and SePaC methods for restoration of fractalsimdépendent partition
and SePaC method for restoration of fractals with alepe partition.
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P-adic coverage

The term P-adic coverage is used by analogy welPtHadic number:

P-adic positive number is written as a series in powers of any number P

x=a,P’+aP +a,P’+a,P’+...

P-adic coverageis a set of distributiong he number of bins M in distributions of set
are changed as degree of basis P

M ={P° P, P? P°+..}

I
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Analysis of the optimum Coverage

regular fractal with dependent partition

4 -
N, 2 4 2 4 4 8 N, Optimum Coverage
3 L 125 I I I I I . 8 = 27 particles consist of a set of
2 4 : .
probes covering an object
e 25 H B :-:rorons _
> 2 — 6 ) which correspondsto
I_I [

2= 2 partons fractal for mation.

The probes correspondsto

per missible range

6 -4 2 0 2 4 6 8
n
> System of the equation for every level N 5
F —
(N-number of probes), — long of the probes) Z di =1

»  Thefirst level (1/5)F+ (2/5)PF =1
»  The second level (1/25F + 2*(2/25PF + (4/25PF = 1
»  Thethird level (1/125F+ 3*(2/125PF + 3*(4/125PF + (8/125PF = 1

Numerical decisions of the equations coincide each other

and define fractal dimension DF =~ 0.5639..
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