## Comparison of BC, PaC and SePaC Methods for Fractal Analysis of Events

T.G. Dedovich & M.V. Tokarev JINR, Dubna, Russia

#### Outline

- Self-similarity and fractality in multiple production at high energies
- Fractals and models of their formation
- Method and Data for Fractal Analysis
- Comparison results of BC, PaC and SePaC methods
- Summary

XXI International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", JINR, Dubna, Russia, September 10-15, 2012



## Self-similarity & z-Scaling

I.Zborovsky Yu. Panebratsev M.Tokarev G.Skoro Phys.Rev.D54(1996)5548 High- $p_T$  inclusive particle spectra is described by dimensionless function  $\Psi$  depending on single dimensionless variable z

TD, M.Tokarev, I.Zborovsky Int. Mod. Phys. A 15, 3495 (2000) Int.Mod. Phys. A27,1250115 (2012)

JINR



Energy, angular independence of  $\Psi(z)$  and power law  $\Psi(z) \sim z^{-\beta}$  over a wide z-range. It indicates on self-similarity of hadron production at various scales.

T.Dedovich

**IBSHEPP XXI** Dubna 2012

## Self-similarity & Fluctuation & Intermittency



T.Dedovich

**IBSHEPP XXI** Dubna 2012

JINR

## Self-similarity & Fractality & Multiple production

 $F_q(\delta y) \sim (\delta y)^{-\phi(q)} , \qquad G_q(\delta y) \sim (\delta y)^{-\tau(q)} , \qquad \Psi(z) \sim z^{-\beta}$ 

**Power Laws** established experimentally, and characterizing self-similarity of particles production on different scales **are typical for fractals** 

**Fractal** is the self-similar object with **nonintegral (fractal) dimension Fractal dimension** is the value  $D_F$  which provides the finite limit

**N** - is number of probes with size  $l_i < \delta$  covering the object

### **Relationship of fractal and multiple production**

**Power Law exponent**  $\tau(q)$ (Intermittency:  $G_q(\delta y) \sim (\delta y)^{-\tau(q)}$ )

#### defines

#### spectrum of fractal dimensions

(generalized fractal dimension)

D(q) = t(q)/(q-1)

- Set of hadrons produced in inelastic interaction are set of points of the three dimensional phase-space  $(p_T, y, \varphi)$
- The distribution of points in phase-space is non-uniformly and is determined by the process of particle production
- Set of these points in the phase-space are considered as a fractal and characterized by the fractal dimension, which depends on interaction dynamics

Determination of fractal dimensions is important for reconstruction of interaction dynamics





T.Dedovich

## Scenario of Parton Shower and Hadronization



#### **Fractal with dependent partition of parts**

Outgoing from hard process parton branch  $a \rightarrow bc$  $\theta \pm -$  admissible opening angle **Black rectangles** –permissible ranges  $\eta = -\ln(tg(\vartheta/2))$ 

The range (consisting of two parts) is considered as uniform object (dependent parts).

Further branching and hadronization keeps spatial structure.

#### **Fractal dimension D**<sub>F</sub>

$$\lim_{\delta \to 0} \sum_{i=1}^{N} l_i^{D_F} = \text{const}$$

$$(1/5)^{D_{\rm F}} + (2/5)^{D_{\rm F}} = 1$$
  
 $D_{\rm F} \approx 0.5639...$ 

#### **Box dimension**

$$D_{b} = -\lim_{\delta \to 0} \frac{\ln N(\delta)}{\ln(\delta)}$$

$$D_b = \ln 3 / \ln 5 \approx 0.6826...$$

**Power Law** 

$$\mathbf{N}_{r} = \mathbf{N}_{p}^{s}$$

 $s = \ln 2 / \ln 5 \approx 0.4307...$ 



T.Dedovich

## **Models of Fractals Formation**

#### **Fractals with dependent partition:**

permissible range consisting of several parts are divided as uniform object (dependently)

#### **Fractals with independent partition:**

permissible ranges consist of one part and are divided independently

**P=5** з Level 2 1 o -2 2 6 8 η **P=5** 3 Level -3 -2 -1 0 1 2 з η

 $D_F \Rightarrow D_b$  for fractal with dependent partition of parts  $D_F = D_b$  for fractal with independent partition of parts



➤Goal: find the fractal dimension for classification events

➢But: to do it correctly we must know the type of the fractal and number of parts at first level

≻Possible solution:

•try a set of fractal coverage and fractal types and choose the best one

•Introduce the createria: how good the fractal fit of the data



# Comparison of existing methods

- Data of analysis
- description of the methods BoxCounting
   P-adic Coverages methods
   SePaC method
- Results and Summary



## Data & Analysis

#### 437 fractals with dependent partition:

All possible variants of fractals with number of parts at first level  $P=4\div8$ 

#### 774 Fractals with independent partition:

All possible variants of fractals with number of parts at first level  $P=3\div8$ 

#### Efficiency of reconstruction of D<sub>F</sub>, N<sub>lev</sub>, P

$$\begin{split} & Eff_{V} = 1 - \left| Err_{V} \right| & if \mid Err_{V} \mid \leq 1 \\ & Eff_{V} = 0 & if \mid Err_{V} \mid > 1 & V = D_{F}, N_{lev}, P \quad Err_{V} = (V_{test} - V) / V_{test} \\ & Eff_{Full} = Eff_{D_{F}} \cdot Eff_{N_{lev}} \cdot Eff_{P} \end{split}$$



## BC, PaC Methods of Reconstruction of Fractal dimension D<sub>F</sub>

Box Counting (BC) & P-adic Coverages (PaC)

- 1. Read out data {X =  $\eta$ , p<sub>T</sub>, ...} of particles in events
- 2. Construction of P-adic Coverages:

Each coverage is a set of distributions of variable X. The number of bins  $M_i$  in distributions of set are changed as degree of basis  $P(M_i=(P)^i)$ 

BC: as a rule P=2, PaC: P=2,  $P_{Max}$ 

- 3. Counting number of non-zero bins N(lev,P): Saturation condition N(lev,P)=N(lev+1,P) defines number of levels N<sub>lev</sub>= lev
- 4. Finding the slope parameter  $D_F$  and  $\chi^2$  of dependence of ln N vs. ln M for each P-adic coverage
- 5. Accuracy condition  $\chi^2(P) < \chi^2_{lim}$ : the set of particles is a fractal ( P and  $D_F(P)$  )

BC has one parameter -  $\chi^2_{lim}$ PaC has two parameters -  $P_{Max}$ ,  $\chi^2_{lim}$  B.B.Mandelbrot The Fractal Geometry of Nature

> DT, M.Tokarev Phys.Part.Nucl.Lett. 8 (2011) 521



## SePaC Methods of definition of fractal dimension D<sub>F</sub>

#### Systems of the Equations of P-adic Coverage (SePaC)

- 1. Read out data  $\{\eta_i\}$  of particles in event
- 2. Construction of P-adic Coverages: P=3,  $P_{Max}$
- 3. Counting number of non-zero bins N(lev,P): saturation condition

N(lev,P)=N(lev+1,P) defines number of levels  $N_{lev}=lev$ 

- 4. Analysis of system of the equations for verification of hypothesis (independent/dependent partition):
  - Construction system of the equations for all levels
    N<sub>lev</sub> and d<sub>lev</sub> number of and long permissible ranges for each level



- **Finding** solution  $D_{F}^{lev}$  by a dichotomy method for each level
- **Defining** average value  $\langle D_F^{\text{lev}} \rangle = \sum_{\text{lev}=1}^{N_{\text{lev}}} D_F^{\text{lev}} / N_{\text{lev}}$  and deviation  $\Delta D_F^{\text{lev}} = |\langle D_F^{\text{lev}} \rangle D_F^{\text{lev}}|$
- Accuracy condition  $\Delta D_F^{lev} \langle Dev \rangle$  set of particles is a fractal (P and  $D_F = \langle D_F^{lev} \rangle$ )

SePaC has two parameters  $-P_{Max}$ , Dev



T.Dedovich

DT, M.Tokarev Phys.Part.Nucl.Lett. 9(2011) 552

## Parameter P<sub>max</sub> of PaC, SePaC

#### Search procedure of maximum P-adic Coverage P<sub>max</sub>

- 1. Construction of  $D_F$ ,  $N_{lev}$ , P distributions for different  $P_{Max}$  at all  $\chi^2_{lim}$
- 2. Calculation of function  $\Delta D_V(P_{Max})$  of a difference of distributions for V=D<sub>F</sub>, N<sub>lev</sub>, P  $\Delta D_V(P_{Max}) = \sum_{i=1}^{i=N_{bin}} |a_i - b_i|$

a<sub>i</sub> and b<sub>i</sub> – bin contents for adjacent distributions ( $P_{Max} = P_j$  and  $P_j + 1$ ) 3. Calculation of extended function  $\Delta D_{Ext}(P_{Max})$ 

$$\Delta D_{Ext}(P_{Max}) = \Delta D_{D_F}(P_{Max}) + \Delta D_{N_{lev}}(P_{Max}) + \Delta D_P(P_{Max})$$

#### Preliminary analysis and result

Comparison of dependences  $\Delta D_{Ext}(P_{Max})$  and  $Eff_{Full}(P_{Max})$ The plateau  $\Delta D_{Ext}(P_{Max})$  corresponds to the maximum  $Eff_{Full}(P_{Max})$ 

4.  $P_{Max}$  is defined as the minimum value on a plateau of  $\Delta D_{Ext}(P_{Max})$ 

Search procedure of optimal value parameter  $P_{Max}$  is developed for PaC and SePaC methods



# Parameter $\chi^2_{lim}$ of BC, PaC

## Search procedure of parameter $\chi^2_{lim}$

- 1. Construction of  $D_F$ ,  $N_{lev}$ , P distributions for different  $\chi^2_{lim}$  at optimal  $P_{Max}$
- 2. Calculation of function  $\Delta D_V (\chi^2_{lim})$  of a difference of distributions for V=D<sub>F</sub>, N<sub>lev</sub>, P.

$$\Delta D_V(\chi^2_{\rm lim}) = \sum_{i=1}^{i=N_{bin}} |a_i - b_i|$$

 $a_i$  and  $b_i$  – bin content for adjacent distribution ( $\chi^2_{lim} = \chi^2_i$  and  $\chi^2_{i+1}$ )

3. Calculation extended function  $\Delta D_{Ext}(\chi^2_{lim})$ 

$$\Delta D_{Ext}(\chi^2_{\lim}) = \Delta D_{D_F}(\chi^2_{\lim}) + \Delta D_{N_{lev}}(\chi^2_{\lim}) + \Delta D_P(\chi^2_{\lim})$$

4. Choice of  $\chi^2_{lim}$  is deremined by preliminary analysis results: comparison of  $\Delta D_{Ext}(\chi^2_{lim})$  and  $Eff_V(\chi^2_{lim})$  dependences

| $N\chi^2_{lim}$ | 1     | 2     | 3     | 4     | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
|-----------------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|
| $X^2_{lim}$     | 10-13 | 10-12 | 10-11 | 10-10 | 10-9 | 10-8 | 10-7 | 10-6 | 10-5 | 10-4 | 10-3 | 0.01 | 0.02 | 0.03 | 0.04 |
| $N\chi^2_{lim}$ | 16    | 17    | 18    | 19    | 20   | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30   |
| $\chi^2_{lim}$  | 0.05  | 0.06  | 0.07  | 0.08  | 0.09 | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  | 1.0  |
| $N\chi^2_{lim}$ | 31    | 32    | 33    | 34    | 35   | 36   | 37   | 38   | 39   | 40   | 41   | 42   | 43   | 44   | 45   |
| $\chi^2_{lim}$  | 1.1   | 1.2   | 1.3   | 1.4   | 1.5  | 1.6  | 1.7  | 1.8  | 1.9  | 2.0  | 2.1  | 2.2  | 2.3  | 2.4  | 2.5  |

Correspondence of number  $N\chi^2_{lim}$  and value  $\chi^2_{lim}$ 



# Choice $\chi^2_{lim}$ for BC

 $\succ$ 

 $\succ$ 



- The first plateau of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim$ zero value Eff<sub>DF</sub>, Eff<sub>P</sub> and Eff<sub>Nlev</sub>
- The first peak of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim$ the first is not zero value Eff<sub>DF</sub>, Eff<sub>P</sub>
- The second peak of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim$  rapid growth Eff<sub>DF</sub>, Eff<sub>P</sub>
- The second plateau of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim$ the maximum Eff<sub>DF</sub>, Eff<sub>P</sub>

 $\chi^2_{lim}$  is defined as the minimum value on a second plateau of  $\Delta D_{Ext}(N\chi^2_{lim})$ 

Search procedure of optimal value  $\chi^2_{lim}$  parameter is developed for BC methods



# Choice $\chi^2_{lim}$ for PaC



- The first plateau of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim$ small value Eff<sub>DF</sub>, Eff<sub>P</sub> and Eff<sub>Nlev</sub>
- The first peak of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim$ rapid growth Eff<sub>DF</sub>, Eff<sub>P</sub> and Eff<sub>Nlev</sub>
- The second peak of  $\Delta D_{Ext}(N\chi^2_{lim})$  ~ rapid decrease Eff<sub>P</sub> and Eff<sub>Nlev</sub>
- The range between peaks of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim \max Eff_P$  and  $Eff_{Nlev}$
- The second plateau of  $\Delta D_{Ext}(N\chi^2_{lim}) \sim \max Eff_{DF}$

 $\chi^2_{lim}$  is defined as the minimum value between peaks of  $\Delta D_{Ext}(N\chi^2_{lim})$  for determination P and N<sub>lev</sub>

 $\chi^2_{lim}$  is defined as the minimum value on a second plateau of  $\Delta D_{Ext}(N\chi^2_{lim})$  for determination  $D_F$ 

Search procedure of optimal value  $\chi^2_{lim}$  parameter is developed for PaC methods



## Parameter *Dev* of SePaC

Search procedure of deviation from an average *Dev* 2 Dep SePaC 1. Construction  $D_F$ ,  $N_{lev}$ , P distributions for different *Dev* at optimum  $P_{Max}$   $\Box^{3}$ <sup>1.5</sup> 2. Calculation function  $\Delta D_V (Dev_{lim})$  of a difference of distributions for each  $V=D_F$ ,  $N_{lev}$ , P 0.5  $\Delta D_V(Dev) = \sum_{i=1}^{Norm} |a_i - b_i|$ here  $a_i$  and  $b_i$  – bin content for adjacent distribution 3. Calculation extended function  $\Delta D_{Ext}(Dev_{lim})$ 10 15 20 25 NDev  $\Delta D_{Ext}(Dev) = \Delta D_{D_{F}}(Dev) + \Delta D_{N_{low}}(Dev) + \Delta D_{P}(Dev)$ DF N<sub>Lev</sub> P 0.8 Preliminary analysis and result ₩ 0.6 Comparition of features of dependences  $\Delta D_{Ext}(Dev)$  and  $Eff_V(Dev)$ : 0.4 Negligible change of  $\Delta D_{Ext}(Dev) \sim negligible change of Eff_V$ Dep 0.2 4. *Dev* is defined as any value in the range  $10^{-6} \div 0.9$ SePaC 25 Correspondence of number  $N_{Dev}$  and value Dev5 10 15 20 N<sub>Dev</sub> 3 4 5 7 8 9 10 12 2 6 11 13 N<sub>Dev</sub> 1  $10^{-6}$  $10^{-5}$  $10^{-4}$  $2 \cdot 10^{-4}$  $5 \cdot 10^{-4}$  $10^{-3}$  $2 \cdot 10^{-3}$  $5 \cdot 10^{-3}$  $10^{-2}$ 0.02 0.04 Dev 0.03 0.05 14 15 16 17 18 19 20 21 22 23 25 26 24 N<sub>Dev</sub> 0.08 0.2 0.5 0.06 0.07 0.09 0.1 0.3 0.4 0.6 0.7 0.8 0.9 Dev

T.Dedovich

**IBSHEPP XXI** Dubna 2012

JINR

## Comparison of BC, PaC, SePaC methods

#### Fractals with independent partition

Efficiency for optimal values of parameters

| Method | Eff <sub>DF</sub> | Eff <sub>NLev</sub> | $\mathrm{Eff}_{\mathrm{P}}$ | $\mathrm{Eff}_{\mathrm{Full}}$ | % event                 | % event              | % event                |  |
|--------|-------------------|---------------------|-----------------------------|--------------------------------|-------------------------|----------------------|------------------------|--|
|        |                   |                     |                             |                                | Err <sub>DF</sub> <0.5% | $Err_{NLev} < 0.5\%$ | Err <sub>P</sub> <0.5% |  |
| BC     | 90.1%             | 0%                  | 28.1%                       | 0.3%                           | 16%                     | 0%                   | 0%                     |  |
| PaC    | 99.4%             | 100%                | 99.2%                       | 98.6%                          | 93%                     | 100%                 | 97%                    |  |
| SePaC  | 99.4%             | 100%                | 99.2%                       | 98.6%                          | 93%                     | 100%                 | 97%                    |  |

**EXAMPLE :** BC: Eff<sub>DF</sub>  $\approx$  90 %

 $D_F$  is precisely restored for small number of events (16%)

 $N_{Lev}$  and P are not precisely restored

> PaC and SePaC: restoration of  $D_F$ ,  $N_{Lev}$ , P with high efficiency (99-100 %)

 $D_{F, N_{Lev}}$ , P is precisely restored for large number of events (93-100%)

PaC and SePaC methods have advantage in the analysis of fractals with independent partition



## Comparison of BC, PaC, SePaC methods

#### Fractals with dependent partition

Efficiency for optimal values of parameters

| Method | Eff <sub>DF</sub> | Eff <sub>NLev</sub> | $\mathrm{Eff}_{\mathrm{P}}$ | $\mathrm{Eff}_{\mathrm{Full}}$ | % event                 | % event              | % event                |  |
|--------|-------------------|---------------------|-----------------------------|--------------------------------|-------------------------|----------------------|------------------------|--|
|        |                   |                     |                             |                                | Err <sub>DF</sub> <0.5% | $Err_{NLev} < 0.5\%$ | Err <sub>P</sub> <0.5% |  |
| BC     | 85%               | 0%                  | 0%                          | 0%                             | 2.5%                    | 0%                   | 0%                     |  |
| PaC    | 86%               | 65%                 | 61%                         | 29%                            | 1.5%                    | 43%                  | 26%                    |  |
| SePaC  | 91%               | 91%                 | 91%                         | 74%                            | 89%                     | 90%                  | 90%                    |  |

**BC:**  $\operatorname{Eff}_{\mathrm{DF}} \approx 85 \%$ 

 $D_F$  is precisely restored for very small number of events (2.5%)  $N_{Lev}$  and P are not restored

- PaC:  $Eff_{DF} \approx 86 \%$ ,  $Eff_{NLev} \approx 65 \%$  and  $Eff_{P} \approx 61\%$ D<sub>F</sub> is precisely restored for very small number of events (1.5%)
- SePaC: restoration of D<sub>F</sub>, N<sub>Lev</sub>, P with high efficiency 91 %
  D<sub>F</sub>, N<sub>Lev</sub>, P are precisely restored for large number of events (89-90%)

SePaC has advantage in the analysis of fractals with depended partition



T.Dedovich

## Summary

- The analysis of fractal (with independent and dependent partition) restoration by BC, PaC and SePaC methods was performed.
- Search procedure of optimal values of parameters  $\chi^2_{lim}$ ,  $P_{Max}$ , *Dev* for determination of fractal dimension  $D_F$ , number of levels  $N_{Lev}$ , and base P for these methods was developed.
- Comparison of BC, PaC and SePaC methods shown advantages of PaC and SePaC methods for restoration of fractals with independent partition and SePaC method for restoration of fractals with depended partition.



# Thank You for attention



T Dedovich

**IBSHEPP XXI** Dubna 2012

## P-adic coverage

## The term P-adic coverage is used by analogy with the P-adic numbers

**P-adic positive number** is written as a series in powers of any number P

$$x = a_0 P^0 + a_1 P^1 + a_2 P^2 + a_3 P^3 + \dots$$

**P-adic coverage** is a set of distributions. The number of bins M in distributions of set are changed as degree of basis P

$$M = \{P^0, P^1, P^2, P^3 + ...\}$$



## Analysis of the optimum Coverage

regular fractal with dependent partition 4 2 4 8 12 2 - 4 N<sub>r</sub> Np 125 8 = 27 particles 3 2 Level 25  $4 \equiv 4$  partons 2 θ. 2 2 = 2 partons 5 ......θ. 1 С 0 -2 -6 0 2 6 -4 4 System of the equation for every level (N-number of probes,  $d_i$  – long of the probes) level  $(1/5)^{DF} + (2/5)^{DF} = 1$ The first The second level  $(1/25)^{DF} + 2*(2/25)^{DF} + (4/25)^{DF} = 1$ The third level  $(1/125)^{DF} + 3*(2/125)^{DF} + 3*(4/125)^{DF} + (8/125)^{DF} = 1$ 

**Optimum Coverage** 

consist of a set of probes covering an object which corresponds to fractal formation. The probes corresponds to

permissible range

JINR

T.Dedovich

**IBSHEPP XXI** Dubna 2012

 $D_{F} \approx 0.5639...$ 

Numerical decisions of the equations coincide each other

and define fractal dimension