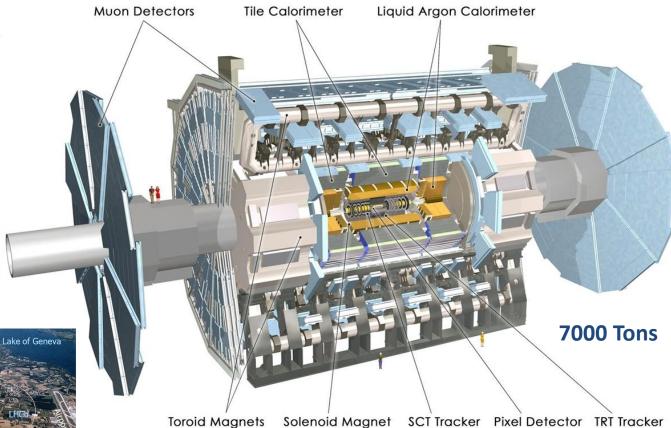

Status and Recent Results of the ATLAS Experiment

A.Cheplakov (JINR, Dubna)
on behalf of the ATLAS Collaboration

- ATLAS detector overview
- Highlights of recent results
 - Standard Model study (and beyond)
 - Heavy Ion physics
 - A new (Higgs?) boson discovery
- ATLAS future upgrade program

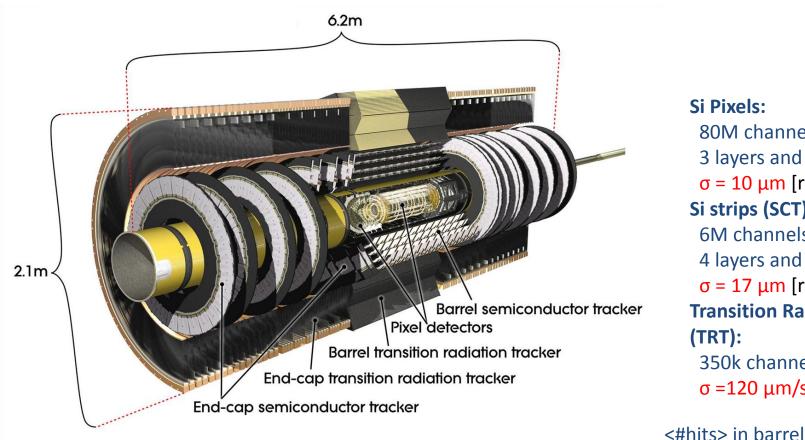
October 1992

We are:
38 nations
174 Institutions
3000 individuals


ATLAS Detector

45 m

ATLAS superimposed to the 5 floors of building 40


+ forward detectors

25 m

ATLAS Inner Tracking Detector (ID)


```
Si Pixels:
 80M channels;
 3 layers and 3 disks;
 \sigma = 10 \mu m [r\phi]
Si strips (SCT):
 6M channels;
 4 layers and 9 disks;
 \sigma = 17 \mu m [r\phi]
Transition RadiationTracker
(TRT):
 350k channels;
 \sigma = 120 \mu m/straw
```

~ 3/8/30 in Pixel/SCT/TRT

```
Precise tracking and vertexing, e/\pi separation;
coverage: |\eta| < 2.5 B (solenoid) = 2T
0.5X_0 at \eta=0; 1.1 X_0 at \eta=1.8
```

```
\sigma/p_{\tau} = 0.038\% p_{\tau}(GeV) \oplus 1.5\%
(3.8\% p_T = 100 \text{GeV}; < 2\% p_T < 35 \text{GeV})
```

```
Impact parameter resolution (0.25<|\eta|<0.5)
(\sigma_{d0}) = 10 \ \mu m \oplus 140 \ \mu m / p_T [GeV/c]
```

ATLAS Calorimeters

LAr-Pb EM calorimeter) (|n|<3.2):

e/γ trigger, identification; measurement

 $\sigma/E \sim 10\%/VE \oplus 0.7\%$

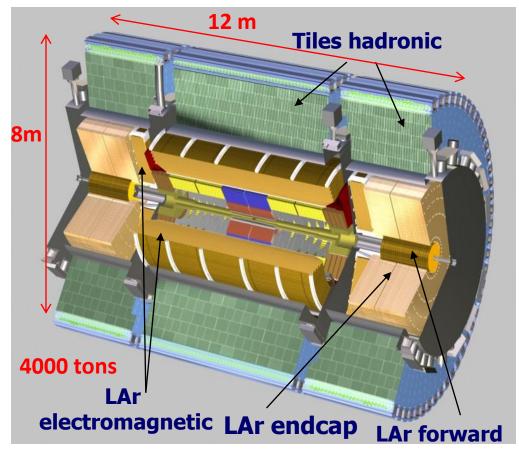
Granularity: **0.025x0.025**; 22X₀

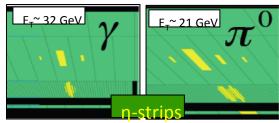
3 longitudinal layers + presampler ($|\eta|$ <1.8)

180x10³ channels

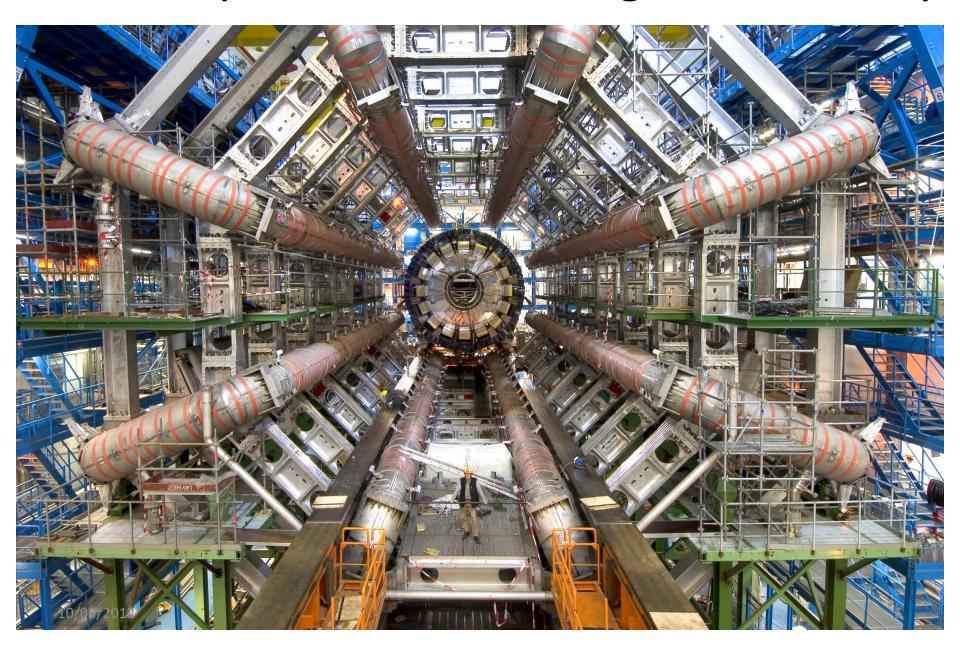
Hadronic calorimeter (|n|<4.9):

Trigger; measure jets; $E_{T,miss}$: $\sigma/E \sim 50-60\%/VE \oplus 3\%$ central $\sigma/E \sim 90\%/VE \oplus 7\%$ in fwd $\sigma(E_{T,miss})/\Sigma E_{T} \approx 55\%$

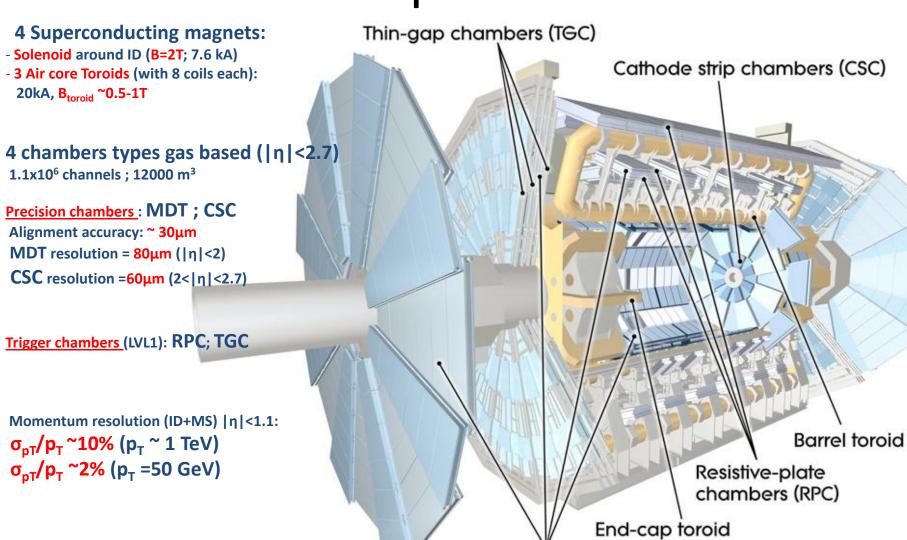

Tiles: $|\eta| < 1.7$; Fe/scintilators **HEC:** 3.2 < $|\eta| < 1.5$; Cu-LAr **FCAL:** 3.1 < $|\eta| < 4.9$; Cu/W-LAr


Thickness: 10λ at $|\eta|=0$

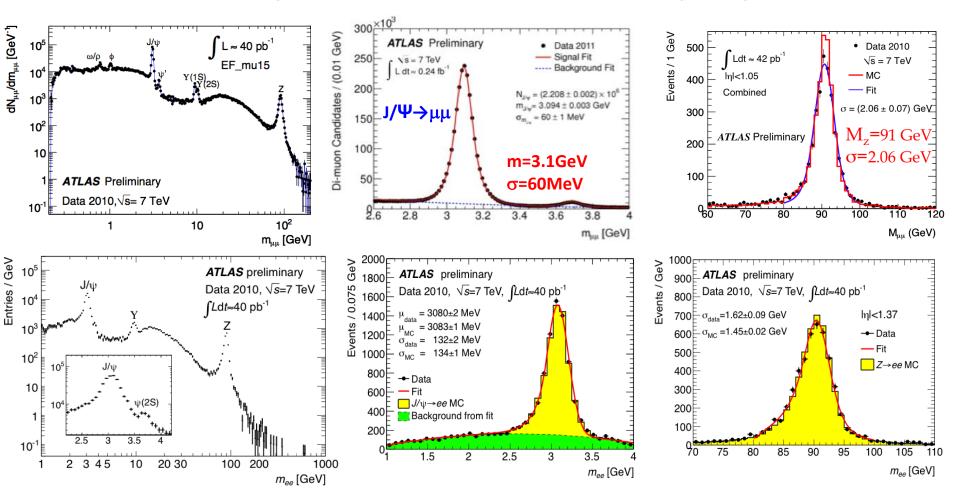
Granularity: $\Delta \eta \times \Delta \varphi : 0.1x0.1$ up to $|\eta| < 2.5$


Segmentation: 3-4 longitudinal layers

20x10³ channels

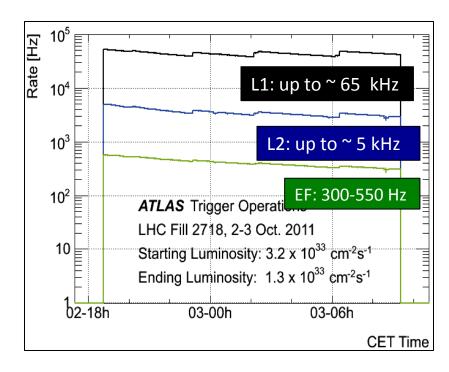


Muon Spectrometer during the assembly

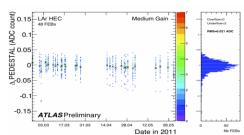


Muon Spectrometer

Monitored drift tubes (MDT)


ATLAS performance for physics

- Perfect agreement with Monte-Carlo simulation
- Check detector performance with known resonance particles (ω, ρ, φ, J/Ψ, Y, Z,...)
- Excellent mass resolution, close to design: (2.2 % at 91 GeV, 1.9% at ~3 GeV)
- Linear response , absolute momentum scale known to ~ 0.2%


ATLAS operation

Subdetector	# channels	Operational fraction
Pixels	80 M	96.8%
SCT Silicon Strips	6.3 M	99.1%
Transition Radiation Tracker (TRT)	350 k	97.5%
LAr EM Calorimeter	170 k	99.8%
Tile calorimeter	9800	96.2%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	97.7%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	98.1%
Total	88M	>96%

Running smoothly:

- ~95% data taking efficiency,
- high & stable recorded physics rate
- e.g. LAr HEC pedestal stability:

rms~0.021ADC

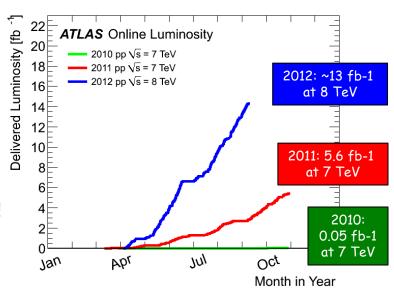
GRID resources are in intensive use:

- reconstruction at Tier0 in ~2 days,
- data available for the analysis on GRID in ~1 week
- up to 150k simultaneous jobs running in parallel (analysis & simulation)

Phenomenal LHC performance

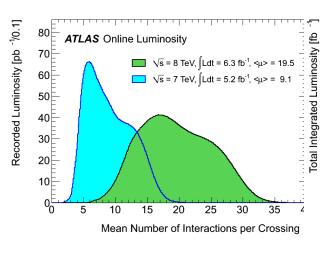
Good start in 2010: ATLAS recorded 45 pb⁻¹ at 7 TeV

Perfection in 2011: 5.25 fb⁻¹ at 7 TeV


Outstanding in 2012: so far 13.4 fb⁻¹ at 8 TeV

Bunch intensity: 1.5x10⁺¹¹ ppb

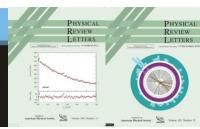
Peak Luminosity: 7.73x10⁺³³ cm⁻² s⁻¹, may reach ~9·10⁺³³!

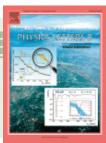

Best week #24: 1.3fb⁻¹ recorded

>50% of time in stable beam

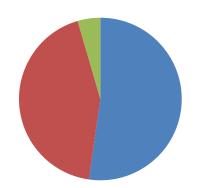
- ✓ Stick with 50ns bunch spacing 1380 bunches, push the bunch intensity
 - ~40 events/crossing
- ✓ Proton beam energy 3.5 TeV → 4 TeV (+15% in Luminosity)
- Check for risk from the splices
- Reduced β *=0.6m in CMS and ATLAS (+60% in Luminosity)

Hope for 15fb⁻¹ by Sep 17 and 20fb⁻¹ @ 8TeV before a long shutdown in 2013


ATLAS results


ATLAS EXPERIMENT - Public Results

available at https://twiki.cern.ch/twiki/bin/view/AtlasPublic



Searches

Measurements

Performance

Last week:

Papers on collision data submitted: 186(+30),

CONF-notes: 386.

average ~2 papers/week this year

Physics Groups:

Standard Model

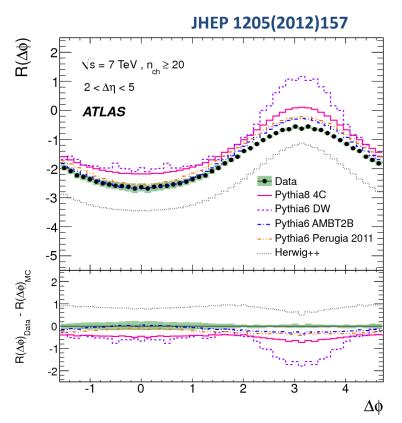
B Physics

Top Physics

Higgs

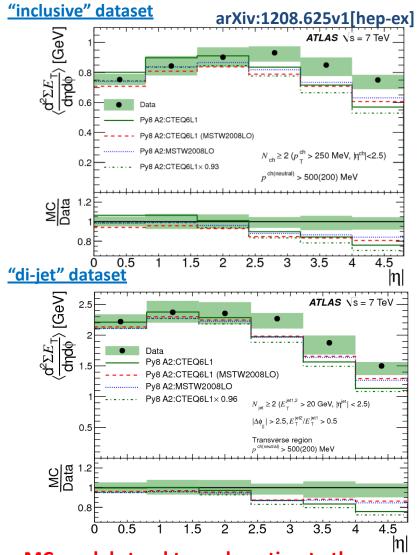
Supersymmetry

Exotics

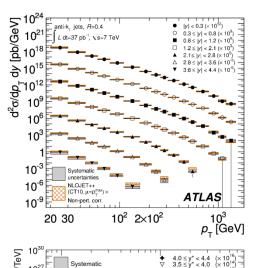

Heavy Ions

Monte Carlo

Soft QCD, Jets, W/Z, Direct v, EW


Soft QCD results

Two-particle angular correlations:



None of the models provide a good quantitative description of the strength of the correlations. The changes required may go beyond their re-tuning.

Total transverse energy:

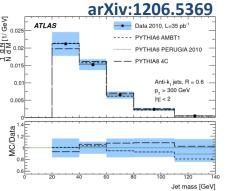
MC models tend to underestimate the amount of transverse energy at high | n |

ATLAS

anti-k, jets, R = 0.4

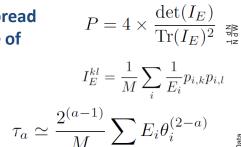
 $\sqrt{s} = 7 \text{ TeV}$, $\int L \, dt = 37 \text{ pb}$

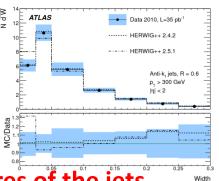
10¹

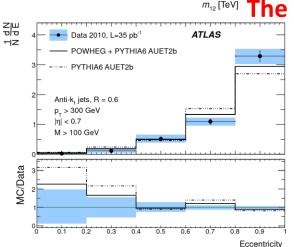

Jet Physics

properties of jets with high p_T:

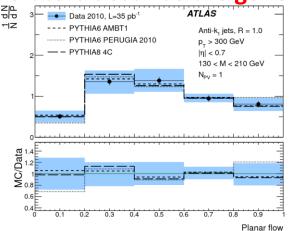
$$\underline{ \text{Jet mass}} \text{ - } M^2 = \left(\sum_i E_i \right)^2 - \left(\sum_i \vec{p_i} \right)^2 \quad \underline{ \text{Jet width}} \text{ - } W = \frac{\sum_i \Delta R^i \ p_{\mathrm{T}}^i}{\sum_i p_{\mathrm{T}}^i}$$

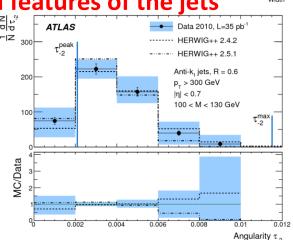

Eccentricity, ε – jet profile deviation from the perfect circle (PCA)


 $\mathcal{E} = 1 - \frac{v_{\min}}{v_{\max}}$


<u>Planar flow</u>, <u>P</u> - jet's energy spread over the plane across the face of the jet (evenly/linearly)

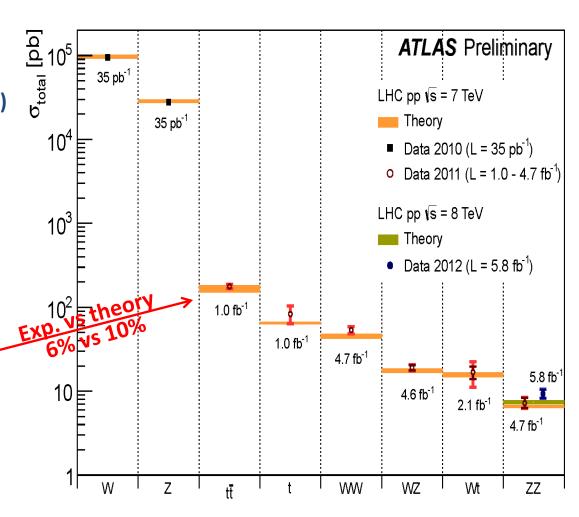
Angularity, τ_a – degree of symmetry in the energy flow inside a jet (a= -2)



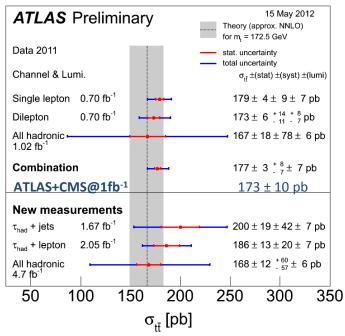


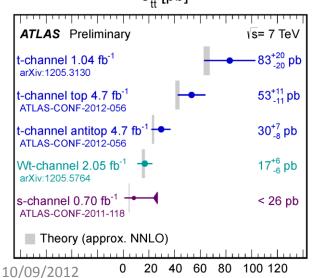
The generators describe the general features of the jets

3 4 5 6 7

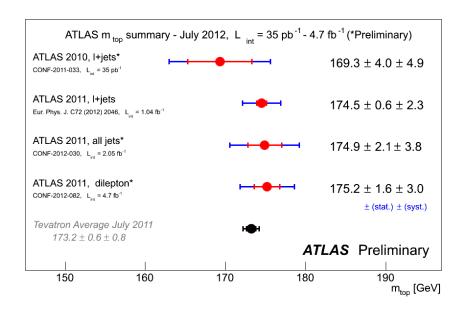


Summary for Standard Model processes


Measurements of Standard
 Model processes going well –
 no surprises so far (NLO or higher)

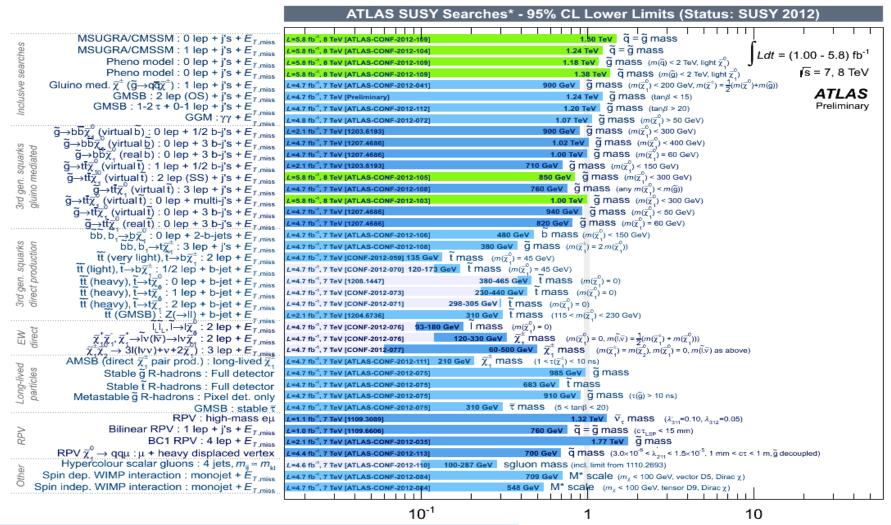

 Good foundation for searches (backgrounds for Higgs)

 A general approach: discovery through precision measurements (e.g. ttbar)



Top quark study examples

single top cross section [pb]

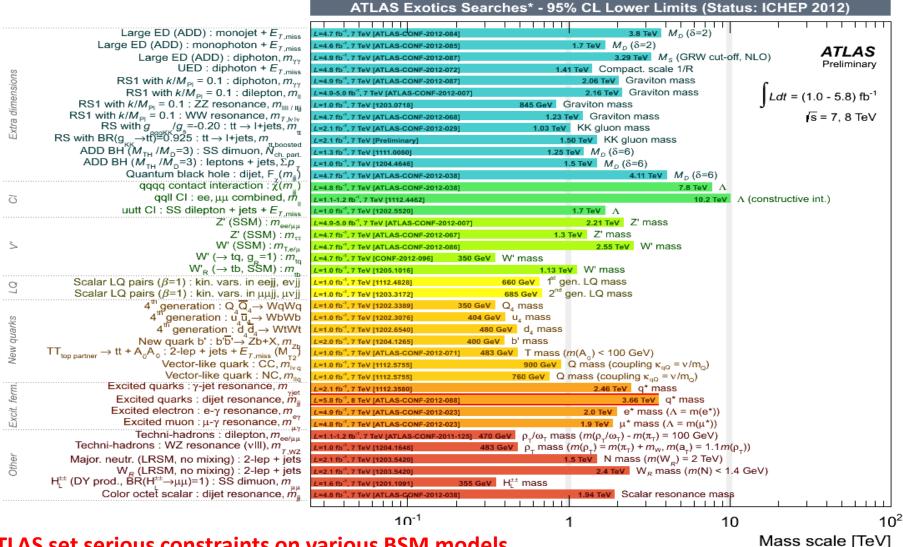

ATLAS+CMS: $m_{\text{top}} = 173.3 \pm 0.5 \text{ (stat)} \pm 1.3 \text{ (syst)}$ GeV

Perspective:

in 2011 (5fb⁻¹), almost one million top pairs were produced and over half billion W bosons

More results being prepared for TOP-2012 (Sept 16): cross-sections, charge asymmetry, W-polarisation, ttZ production, ttbar resonances, etc. including 8 TeV data

ATLAS limits for SUSY searches



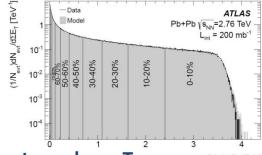
...searching for event excess in a particular final state

...searching for bump in an invariant mass spectrum

Mass scale [TeV]

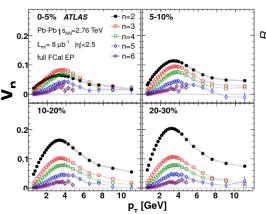
Representative selection of other BSM searches

ATLAS set serious constraints on various BSM models


Ian Hinchliff: "Your model may not be on the list yet...

ISHEPP2012 Seminar Your time will come"

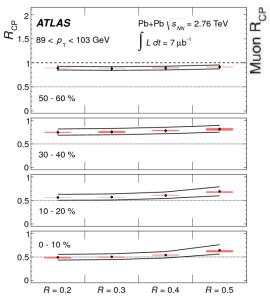
Heavy Ion program


Probing the QGP in Pb+Pb at $\sqrt{s_{NN}}$ =2.76 TeV (9 μ b⁻¹ + 160 μ b⁻¹):

- pressure-driven collective expansion as well as attenuations ("quenches") of high- p_T quarks and gluons not achievable in hadronic system;
- final state multiplicity consistent with initial state gluon production at temperature above T_C.

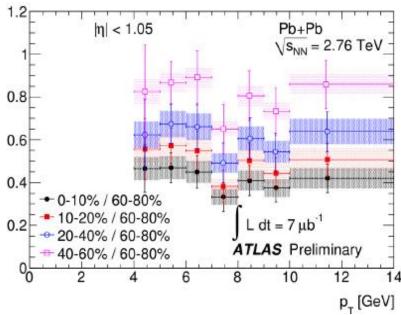
FCal ΣE_T [TeV]

Azimuthal anizotropy



- significant harmonic flow coefficients v_n (n>2)
- v3>v2 (0-5%)

$$E\frac{d^3N}{dp^3} = \frac{d^2N}{2\pi p_{\rm T}dp_{\rm T}d\eta} \left(1 + 2\sum_{n=1}^{\infty} v_n(p_{\rm T}, \eta)\cos n\left(\phi - \Phi_n\right)\right)$$

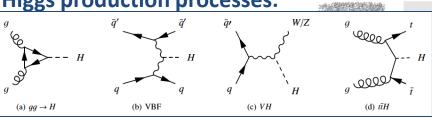

Recent observations:

 suppression factor of ~2 in central collisions

Heavy flavour suppression

• factor of ~2 suppression in (0-10%)/(60-80%)

ATLAS will focus on:


- using high-p_T jets, dijets and multi-jet final states, and b-jets
- precision measurements with γ-jet and Z-jet pairs
- use quarkonia Y(1S), Y(2S), Y(3S) to study Debye screening
- study of Cold Nuclear Matter effects& low-x with p+Pb
- 2013: 30 nb⁻¹ (pilot run this week)
- high precision Pb+Pb

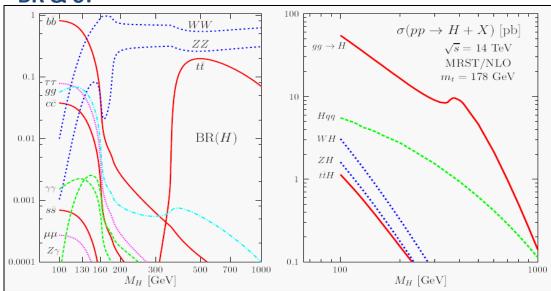
2015-16: ~400μb⁻¹ at √s_{NN}=5.5 TeV

Higgs boson hunting

Physics Letters B 716 (2012) 1-29

Higgs production processes:

Contents lists available at SciVerse ScienceDirect


Physics Letters B

www.elsevier.com/locate/physletb

just published - the true! dreams come true!

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

AS colleagues who did not live to see the full impact and significance of their

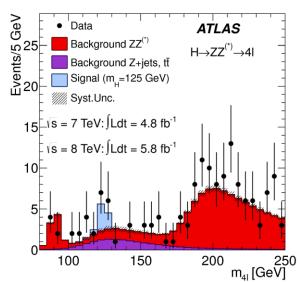
TRACT

ch for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at C is presented. The datasets used correspond to integrated luminosities of approximately $4.8~{
m fb}^{-1}$ ed at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $Z^{(*)} \to 4\ell$, $H \to \gamma \gamma$ and $H \to WW^{(*)} \to e \nu \mu \nu$ in the 8 TeV data are combined with previously ed results of searches for $H \to ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from ed analyses of the $H \to ZZ^{(*)} \to 4\ell$ and $H \to \gamma\gamma$ channels in the 7 TeV data. Clear evidence for duction of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ±0.4 (sys) GeV is presented. oservation, which has a significance of 5.9 standard deviations, corresponding to a background tion probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model

@ 2012 CERN. Published by Elsevier B.V. All rights reserved.

 σ_{tot} = 17.5 (22.3) pb at 7 (8) TeV

 $m = 126.0 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ GeV}$


The channels involved:

$$H \rightarrow \gamma \gamma$$
,
 $H \rightarrow ZZ(*) \rightarrow 4I$
 $H \rightarrow WW(*) \rightarrow IVIV$

$$H \rightarrow \gamma \gamma$$
, $H \rightarrow TT$
 $H \rightarrow ZZ(*) \rightarrow 4I$ $W/ZH \rightarrow bb$
 $H \rightarrow WW(*) \rightarrow IVIV$ $H \rightarrow WW \rightarrow IVqq$

$$H \rightarrow ZZ \rightarrow IIqq$$

 $H \rightarrow ZZ \rightarrow IIvv$

Two most sensitive channels – 4ℓ and γγ

4/: σ·BR=2.2(2.8) fb @ 7(8) TeV Backgrounds: ZZ(*), ttbar, Z+jets

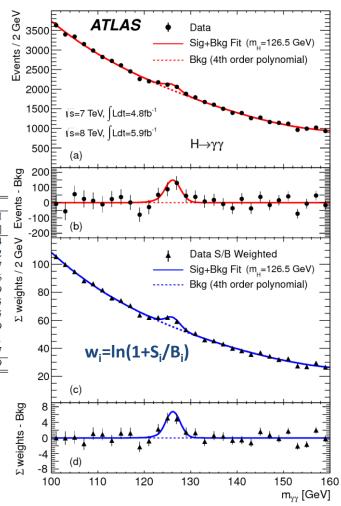
Event selection – single & dilepton triggers Lepton candidates (isolated):

- muons ID+MS, $p_T > 7$ GeV, $|\eta| < 2.47$
- electrons ID+LArEM, p_T > 6 GeV, $|\eta|$ <2.7

Mass-window cut for m₃₄ (m_{min}<m₃₄<115 GeV)

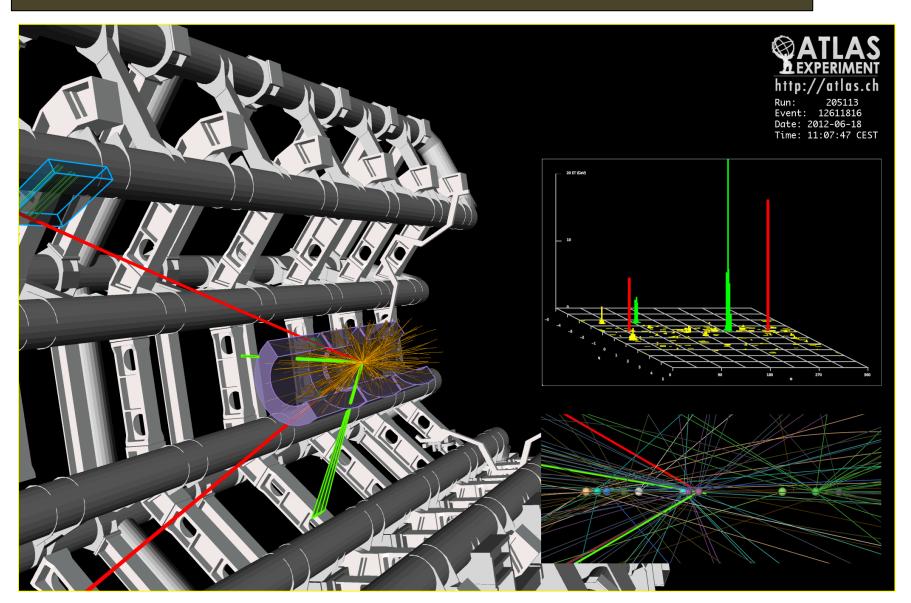
Combined signal reconstruction and event selection efficiencies: 15%(4e) - 37%(4µ)

	Signal	$ZZ^{(*)}$	Z + jets, tt	Observed
-4μ	2.09±0.30	1.12±0.05	0.13 ± 0.04	6
$2e2\mu/2\mu2e$	2.29 ± 0.33	0.80 ± 0.05	1.27±0.19	5
4e	0.90±0.14	0.44 ± 0.04	1.09±0.20	2


<u>γγ:</u> σ·BR=39(50) fb @ 7(8) TeV Backgrounds: QCD-γγ, γ+j, j+j, D-Y

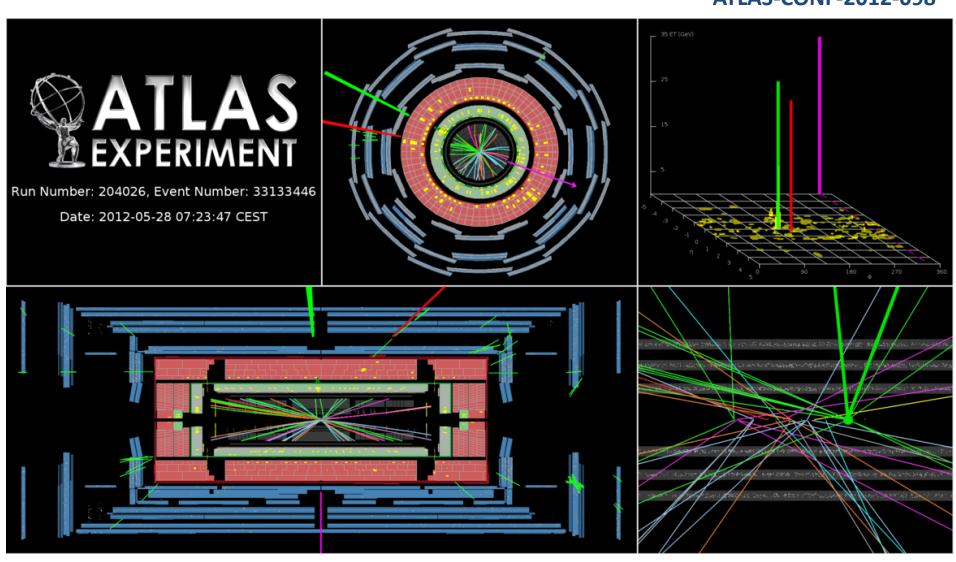
Event selection – diphoton trigger Photon candidates (isolated):

- $-E_{T} > 40/30 \text{ GeV}$, $|\eta| < 2.37$
- LArEM shower shapes

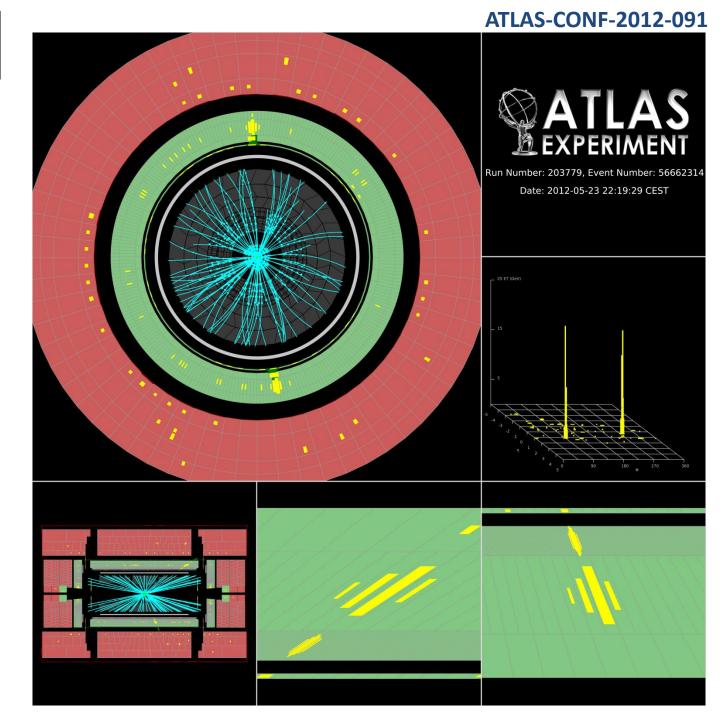

VBF (2 extra jets) + 9 event categories:

\sqrt{s}	7 Te	eV		8 TeV	
$\sigma \times B(H \to \gamma \gamma)$ [fb]		39		50	FWHM
Category	$N_{ m D}$	$N_{\rm S}$	$N_{ m D}$	$N_{\rm S}$	[GeV]
Unconv. central, low p_{Tt}	2054	10.5	2945	14.2	3.4
Unconv. central, high p_{Tt}	97	1.5	173	2.5	3.2
Unconv. rest, low p_{Tt}	7129	21.6	12136	30.9	3.7
Unconv. rest, high p_{Tt}	444	2.8	785	5.2	3.6
Conv. central, low p_{Tt}	1493	6.7	2015	8.9	3.9
Conv. central, high p_{Tt}	77	1.0	113	1.6	3.5
Conv. rest, low p_{Tt}	8313	21.1	11099	26.9	4.5
Conv. rest, high p_{Tt}	501	2.7	706	4.5	3.9
Conv. transition	3591	9.5	5140	12.8	6.1
2-jet	89	2.2	139	3.0	3.7
All categories (inclusive)	23788	79.6	35251	110.5	3.9

H→ZZ^(*)→2e2 μ candidate with m_{2e2 μ}= 123.9 GeV


p_T (e,e,μ,μ)= 18.7, 76, 19.6, 7.9 GeV, m (e⁺e⁻)= 87.9 GeV, m(μ⁺μ⁻) =19.6 GeV 12 reconstructed vertices

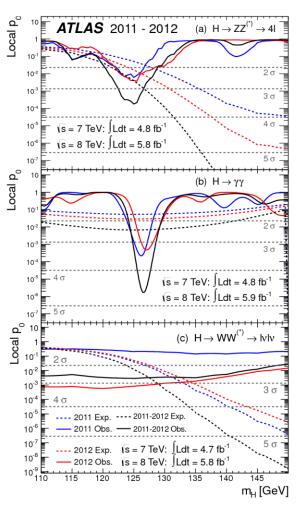
$H\rightarrow WW(*)\rightarrow ev \mu v candidate$


 $p_{T, e}$ =33 GeV, $p_{T, \mu}$ = 29 GeV, E_{tmiss} = 35 GeV and m_T = 94 GeV

ATLAS-CONF-2012-098

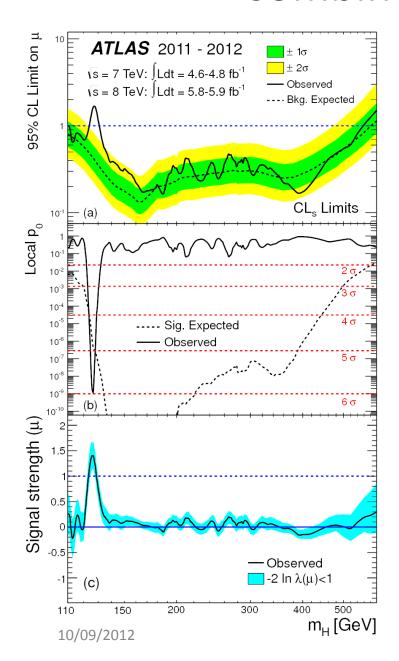
H→γγ candidate with m_{yy} = 126.9 GeV

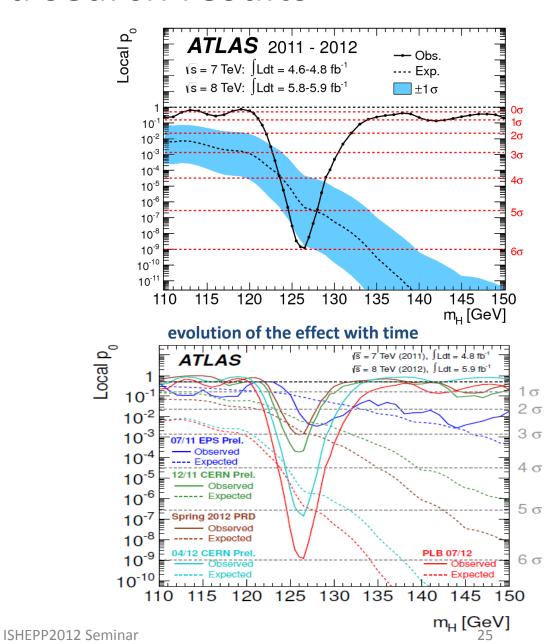
E $_{T,\gamma 1}$ = 62.2 GeV, $\eta_{\gamma 1}$ = 0.39 E $_{T,\gamma 2}$ = 55.5 GeV, $\eta_{\gamma 2}$ = 1.18



Summary of individual channels entering the combination

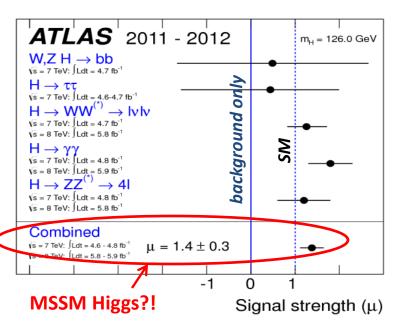
To enhance the search sensitivity, the decay modes are subdivided into sub-channels with different signal and background contributions and different systematics:


Higgs Boson Decay Subsequent Decay Sub-Channels m_H Range [fb ⁻¹] $\int L dt$ [fb ⁻¹] H $\rightarrow ZZ^{(*)}$ 4ℓ						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Higgs Boson	Subsequent	Sub-Channels	m _H Range	$\int L dt$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Decay	Decay	Suo-Chainleis	[GeV]	$[fb^{-1}]$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2011 \sqrt{s} = 7 \text{ TeV}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4ℓ	{4e, 2e2μ, 2μ2e, 4μ}	110-600	4.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H \rightarrow ZZ^{(*)}$	$\ell\ell\nu\overline{\nu}$	$\{ee, \mu\mu\} \otimes \{\text{low, high pile-up}\}$	200-280-600	4.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\ell\ell q\overline{q}$	{b-tagged, untagged}	200-300-600	4.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H \rightarrow \gamma \gamma$	-	10 categories {p _{Tt} ⊗ η _γ ⊗ conversion} ⊕ {2-jet}	110-150	4.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	u , ш/ш/(*)	$\ell \nu \ell \nu$	$\{ee, e\mu/\mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\} \otimes \{\text{low}, \text{high pile-up}\}$	110-200-300-600	4.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H \rightarrow WW \lor \ell \nu q q'$	$\{e,\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	300-600	4.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, VH\}$	110-150	4.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			110-150	4.7		
$\begin{array}{c ccccc} VH \to Vbb & W \to \ell\nu & p_{\rm T}^{W^1} \in \{<50,50-100,100-200,\geq 200~{\rm GeV}\} & 110-130 & 4.7 \\ Z \to \ell\ell & p_{\rm T}^{Z} \in \{<50,50-100,100-200,\geq 200~{\rm GeV}\} & 110-130 & 4.7 \\ \hline & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	$\tau_{ m had} \tau_{ m had}$			110-150	4.7	
		$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\}$	110-130	4.6	
		$p_T^{W^1} \in \{<50, 50-100, 100-200, \ge 200 \text{ GeV}\}$	110-130	4.7		
$H \to ZZ^{(*)}$ 4ℓ {4e, 2e2µ, 2µ2e, 4µ} 110–600 5.8 $H \to \gamma \gamma$ – 10 categories {p _{Tt} ⊗ η _γ ⊗ conversion} ⊕ {2-jet} 110–150 5.9		$p_{\rm T}^{\rm Z} \in \{<50, 50 - 100, 100 - 200, \ge 200 \text{ GeV}\}$	110-130	4.7		
$H \rightarrow \gamma \gamma$ – 10 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$ 110–150 5.9	$2012 \sqrt{s} = 8 \text{ TeV}$					
	$H \rightarrow ZZ^{(*)}$	4ℓ	{4e, 2e2μ, 2μ2e, 4μ}	110-600	5.8	
	$H \rightarrow \gamma \gamma$	_	10 categories {p _{Tt} ⊗ η _γ ⊗ conversion} ⊕ {2-jet}	110-150	5.9	
	$H \rightarrow WW^{(*)}$	еvµv	$\{e\mu, \mu e\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet}\}$	110-200	5.8	


The parameter of interest is the global signal strength factor μ , which acts as a scale factor on the total number of SM Higgs events: μ =0 – backgr. only hypothesis, μ =1 – SM Higgs in addition to background. Hypothesized values of signal strength were tested based on the profile likelihood ratio (G.Cowan et al, 2011)

p₀ – probability of the background fluctuation (excess significance)

Combined search results



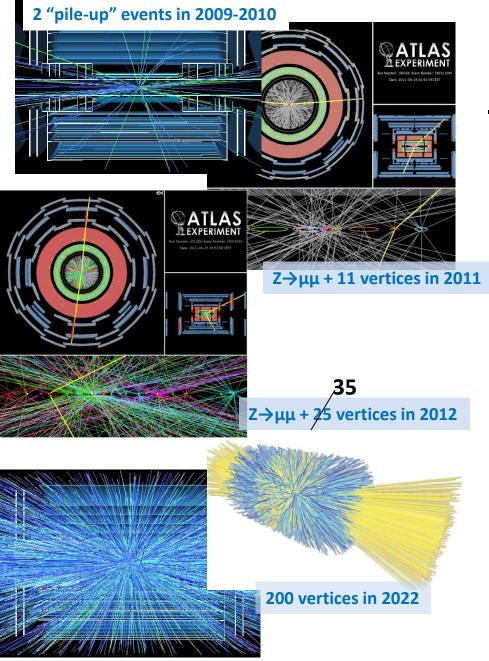
ATLAS upgrade motivation

The European Strategy for Particle Physics - Krakow, 10-12 September 2012

ATLAS is interested in two domains of LHC upgrade:

- a luminosity upgrade (HL-LHC), with instantaneous luminosity up to L~ 5x10³⁴ cm⁻² s⁻¹
- an energy upgrade (HE-LHC), with a center of mass energy √s = 30 TeV

Once the Higgs-like boson is discovered we will measure the physics properties of this object:


- its mass,
- set an upper limit to its width,
- measure the couplings to W and Z, and to fermions.

With integrated luminosities as large as 300fb⁻¹ at \sqrt{s} 13 TeV:

- accurate measurements of couplings,
- rare decays of Higgs boson, such as $H \rightarrow \mu\mu$ and $H \rightarrow Z\gamma$,
- study of the VV scattering (V=W,Z)

ATLAS will continue the search for new phenomena or new particles that are predicted by alternative models and theories.

ISHEPP2012 Seminar

<u>Upgrade schedule</u>

Expected Luminosities LHC → **HL-LHC**

```
2009
           LHC startup, \sqrt{s} = 900 \text{ GeV}
                                                                        SLdt
2010
2011
         \sqrt{s}=7^{8} TeV, L=6x10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>, 50ns
                                                                        ~20 fb<sup>-1</sup>
2012
           Go to design energy, nominal luminosity
2013
2014
2015
                                                                      ~100 fb<sup>-1</sup>
2016
          √s=13~14 TeV, L~1x10<sup>34</sup> cm-2 s-1, 25ns
2017
2018
           LHC Phase-1 upgrade to full design luminosity
2019
2020
         Vs=14 \text{ TeV, } L^{2}x10^{34} \text{ cm}^{-2} \text{ s}^{-1}, 25 \text{ ns}
                                                                      ~300 fb<sup>-1</sup>
2021
2022
           HL-LHC Phase-2 upgrade
2023
          Vs=14 \text{ TeV, } L=5x10^{34} \text{ cm}^{-2} \text{ s}^{-1}
                                                                     ~3000 fb<sup>-1</sup>
           luminosity leveling
2030?
```

ATLAS upgrades

ATLAS Letter of Intent for Phase-I Upgrade as been published early this year in CERN-LHCC-2011-012:

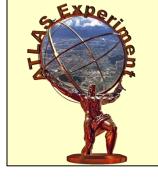
https://cdsweb.cern.ch/record/1402470/files/LHCC-I-020.pdf

32.62 MCHF the total Core cost

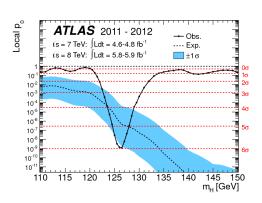
Muon system – a new tracking and trigger device in the inner layer of the forward spectrometer, that will not only provide a sharper trigger threshold, but also greatly improve the tracking performance under the higher backgrounds expected with the LHC upgrades (e.g. 60 kHz for L1MU20 trigger @ 14TeV @ 3·10³⁴cm⁻²s⁻¹).

- Baseline (approved) solution: equip the Small Wheels with sTGC & MicroMegas chambers
- MAMMA's R&D is ongoing at CERN (successful test-beam in June'2012)

Calorimeters – a new trigger read-out boards will be implemented in the electromagnetic and forward calorimeters to exploit the longitudinal sampling of the calorimeter as well as including a higher trigger granularity comparable to that presently available in the full calorimeter read-out, which will lead to an improvement in rejecting fake electron triggers (e.g. 80 kHz - the rate for single isolated EM clusters above 23 GeV, projected to $2 \cdot 10^{34}$ cm⁻²s⁻¹).


Also.

- additional ATLAS Forward Proton (AFP) detector at the distance of ~200m
- Fast Tracking trigger (FTK) a pipeline electronics system for the fast track processing in Si-detectors at L1-level
- Trigger/DAQ upgrades, etc.


ATLAS LoI for Phase II should be ready by the end of 2012

Conclusions

- the SM Higgs boson is excluded at 95% CL in a wide mass range of 111 GeV – 559 GeV, except for a narrow window around 126 GeV
- very reliable candidate for the Higgs boson is observed by the ATLAS and the CMS Collaborations (well above 5σ "discovery threshold")
 - but hunting is not over yet!
- the strategy of the future analyses and detector development is shaping up
- more news inevitably to come, stay tuned

V.Rubakov: "A particle physics becomes the experimental science [again]"

– what a great time!

Hurry up - the trophies are available now at the ATLAS secretariat...

