POSSIBLE ORIGIN OF EVENTS pp $\rightarrow \mathrm{pp}+\mathrm{n} \pi$ WITH ANOMALOUS MULTIPLISITY,

OBSERVED AT INSIDENT PROTON ENERGY 50 GeV (PROT E-190)
(Yad.Phys. 75 (3), 343 (2012))

G.M.Amalsky (PNPI, Gatchina)
"E-190" data pp \rightarrow pp+n $\pi \quad$ (Yad.Phys. 75 (3), 343 (2012))

Рис. 7. Сразненне топологиесквх сетений с МГД [11], модетью ИФВЭ [12] и NBD [13].
"Anomalous" observed probabilities for large $n \pi$

plane

- Considered data.
- "Black balls" model for NN scattering.
- Non-equilibrium short-life rotational states.
- "Forced" emission of mesons.
- Estimates for peripheral collisions with $\mathrm{n}_{\pi}=36$.

Considered data $p p \rightarrow p p+n \pi \quad\left(u p\right.$ to $\left.n_{\pi}^{\max }=36\right)$

$$
\begin{aligned}
\mathrm{P}_{0}=50 \mathrm{GeV} / \mathrm{c}, & \mathrm{E}_{0}=50,947 \mathrm{GeV}, \quad\left(\mathrm{v}_{\text {s.c.m. }}=0.981 \mathrm{c}\right) \\
& \mathrm{E}_{0}^{\prime}=9.78 \mathrm{GeV}, \quad \mathrm{~T}_{0}^{\prime}=7.90 \mathrm{GeV},
\end{aligned}
$$

$\mathrm{n}_{\pi}{ }^{\text {max }}=36$ with mean energy $\sim 70 \mathrm{MeV}, \mathrm{E}_{36 \pi}^{\prime}=7.56 \mathrm{GeV}$
(7.56 / $7.90=96 \%$ of pp kin. energy into 36π emission)

Consistent theory is absent for the present.
"Special" hypotheses: "active" gluons in q-g plasma (central collisions), "clan" structure of interaction, ...

Possible mechanism in "black balls" model

Emission of pairs of π-mesons in $n_{\pi} / 2$ short-life rotary states

$$
L_{p}=b P_{p}
$$

$$
\Delta \mathrm{P}_{\mathrm{p}}=\delta \mathrm{P}_{\mathrm{p}^{\prime}}+\mathrm{P}_{\sigma}=\Delta \mathrm{L}_{\mathrm{p}} / \mathrm{b}
$$

$$
\Delta L_{p}=L_{\sigma}=b_{\sigma} P_{\sigma}(=12 \eta)
$$

$\mathrm{n}_{\sigma}=\mathrm{n}_{\pi} / 2$ short-life rotary states appear during interact.
$n \pi$ appear far away $\sim 2 R \sim 1 f$ from "interaction point" in result of $n_{\pi} / 2$ transitions with $\Delta L_{p}=L_{\sigma}=12 \eta$.

Empirical ground of "black balls" model of NN interact.

- "Geometric" cross-sections of NN scattering ($\sigma_{\text {el }} \sim 8 \mathrm{mb}$ and $\sigma_{\text {inel }} \sim 31,5 \mathrm{mb}$ at $\mathrm{P} \sim 5-1000 \mathrm{GeV} / \mathrm{c}$)
- Data $n p \rightarrow n p \pi^{+} \pi^{-}$and $n p \rightarrow n p K^{+} K^{-}$at $P_{n}=5.2 G e V / c$
(Yu.A.Troyan et al.,
Proc. XVIII ISHEPP, 2006, V.1, p. 114 and V.2, p. 186)

(p, p) and ($\mathrm{p}^{-\quad, \mathrm{p}}$) scattering data

 energy. Correepcoding ccaputer-readable dats files may be found at http://pdg.161.gov/curront/xeoct/. (Courtesy of the COMPAS group,
IHEP, Protvino, August 2005) IHEP, Protvino, August 2005)

Proton-proton cross-sections $\sigma_{\text {inel }}=4 \sigma_{\text {el }}$

$\mathrm{E} \sim 5-100 \mathrm{GeV}: \quad \sigma_{\mathrm{el}} \sim 8 \mathrm{mb}=\pi \mathrm{R}^{2}, \quad \mathrm{R}=0.50 \mathrm{fm}$,
$\sigma_{\text {tot }} \sim 40 \mathrm{mb}=5 \pi R^{2}, \quad \sigma_{\text {inel }} \sim 4 \sigma_{\text {el }}=4 \pi R^{2}$

"Geometrical" view of NN cross-sections

Empirical equality $\sigma_{\text {el }}=\sigma_{\text {inel }} / 4$ is "black balls" ratio with $\sigma_{\text {el }}=\pi R^{2}$ and $\sigma_{\text {inel }}=4 \pi R^{2}$.

$$
\sigma_{e l}=\sigma_{i n e l} / 4
$$

$$
\sigma_{\mathrm{el}}=\sigma_{\mathrm{inel}}
$$

Present theory is not suited for "black balls" scattering.
(This is variant of Fraunhofer theory of diffraction)

Empirical ratio $\sigma_{\text {tot }}=5 \pi R^{2}\left(E / E_{0}\right)^{1 / 5}, R=0.50 f, E_{0}=70 \mathrm{GeV}$
(E is $s^{1 / 2}$), for $E=7 \mathrm{TeV}$ this expression gives

$$
5 \pi(0.5 \mathrm{f})^{2}(100)^{1 / 5}=39,3 \mathrm{mb} * 2.51=98.7 \mathrm{mb}
$$

coincides with value LHC (2011) $\sigma_{\text {tot }}=98.5 \mathrm{mb}(\mu 2$ 2?)
"Black balls" model can explain dependence $\left(E / E_{0}\right)^{1 / 5}$
($c \eta / 2 E=r-$ "size" of virtual inner events with $\tau \sim r / c$)
$\left(2 E_{0} \sim 140(\mu 10) \mathrm{GeV}\right.$ as mass of free real particle)

Unobserved properties of "free" particles

Observed interacted particles - with non-equilibrium inner states.
"Equilibrium" state of free particle is unobserved and therefore unknown.

Non-equilibrium nucleons states in NN scattering are similar to "black balls".

Non-equilibrium inner states of interacted nucleons

Nucleon as probability distribution of constituent virtual events. Distributions of interacted nucleons turn into compressed to b/2 Probability is a possibility of some event, it is abstract notion. If transfer of energy or momentum is absent, all probabilities of considered distributions may be redefined instantaneously, without effects of lateness,

Boundary $\mathrm{b}=2 \mathrm{R}$ of inelastic NN interaction, "thickness" $\Delta b_{\text {el-inel }}=\eta / P$ separates elastic and inelastic events

Instability of non-equilibrium distributions $R<R=0,50 f$

100% probability of reactions for collision with $b<2 R$ can not be probability of some casual local events,
this is nonrandom "regular" result - "surface" of compressed to $R<R$ distribution becomes unstable:
due to violation of indistinguishability of possible ev.?
(or other condition of keeping of stable distribution?)
$n p \rightarrow n p \pi^{+} \pi^{-}$at $P_{n}=5.2 \mathrm{GeV} / \mathrm{c},\left(\pi^{+} \pi^{-}\right)$in state $\mathrm{J}^{\pi}=0^{+}$ Final proton moves forward in c.m.s., 7647 events $\sigma^{\prime} \sim 2 \mathrm{mb}$ Theory allows only 17% of observed events. Forbids $\sim 83 \% \sigma$ '

$\mathrm{M}_{\pi i}{ }^{(\mathrm{i})} \mathrm{C}^{2}=\mathrm{V}\left(2 \mathrm{~L}_{1}{ }^{(\mathrm{i})}-1\right), \quad \mathrm{V}=\eta^{2} /\left(6 \mathrm{mR} \mathrm{R}^{2}\right), \quad \mathrm{m}$ of nucleon, $\mathrm{R}=0.50 \mathrm{fm}$
$n p \rightarrow n p K^{+} K^{-}$at $P_{\mathrm{n}}=5.2 \mathrm{GeV} / \mathrm{c}$
3138 K+K-events: $\sim(1-0.17) 7647 / 2=3173$ - half of forbidden $\pi^{+} \pi^{-}$events Two transitions $n p \rightarrow(n+2 \pi)(p+2 \pi) \rightarrow n p K^{+} \boldsymbol{K}^{-}$, it explains $N_{2 K^{\prime}} \sim 1 / 2 N_{2 \pi}\left(0^{+}\right)$

$$
M_{n k}{ }^{(i)} c^{2}=m+2 m_{\pi}+V\left(L_{1}^{(i)}-1 / 2\right), \quad V=\eta^{2} /\left(6 m R^{2}\right), \quad R=0.50 f m
$$

"Black balls" description of $\mathrm{np} \rightarrow \mathrm{np} \pi^{+} \pi^{-}$and $\mathrm{np} K^{+} K^{-}$data
Quantization of angular momentum $\mathrm{L}_{1}=\mathrm{bp}_{\mathrm{n}}$ of two-nucleons rotating system and its transition into state with $\mathrm{L}_{\mathrm{f}}=\mathrm{L}_{1}-2$

Parameter R is defined by data: $R=L_{1}(\max) / p_{0} \sim 26 \eta / p_{0}=0.50 f m$

Description of spectra by rotary model of two-nucleon system
(ISHEPP XIX,
v.1, p. 208)
(black line) $\mathrm{M}_{\pi \pi}{ }^{(\mathrm{i})}=2 \mathrm{~V}\left(\mathrm{~L}_{1}{ }^{(\mathrm{i})}-1 / 2\right) / c^{2},\left(\right.$ even $\left.\mathrm{L}_{0}{ }^{(\mathrm{i})}=\mathrm{L}_{1}{ }^{(\mathrm{i})}\right)$
(blue line) $\quad \mathrm{M}_{n K^{(\mathrm{i})}=}=\mathrm{V}\left(\mathrm{L}_{1}{ }^{(\mathrm{i})}-1 / 2\right) / c^{2}+\mathrm{m}+2 \mathrm{~m}_{\pi},\left(\right.$ odd $\left.\mathrm{L}_{0}{ }^{(\mathrm{i})}=\mathrm{J}^{(\mathrm{i})}=\mathrm{L}_{1}{ }^{(\mathrm{i})}-1\right)$ $V=\eta^{2} /\left(6 m R^{2}\right), \quad m$ of nucleon, $R=(0.50 \mu 0.01) f m$

Events $n p \rightarrow n p \pi^{+} \pi^{-}$at $\mathrm{P}_{\mathrm{n}}=5.2 \mathrm{GeV} / \mathrm{c}$ with $\mathrm{M}_{\pi \pi}{ }^{(\max)} \sim 1.4 \mathrm{GeV} / \mathrm{c}^{2}$
in lab. system final momentum $\mathrm{L}^{\prime}{ }_{n}+\mathrm{L}^{\prime}{ }_{p}+\mathrm{L}^{\prime}{ }_{\pi \pi}=\mathrm{L}_{1}{ }^{\max }-2 \sim 24 \eta$ created by n ' and $\mathrm{M}_{\pi \pi}$:

L_{1} and L^{\prime} are angular momenta of movement relatively point C

Borders of spectra $\mathbf{M}^{(\max)}{ }_{\pi+\pi-}, \mathbf{M}^{(\max)}{ }_{\mathrm{nK}}^{+}, ~ a n d ~ r a d i u s ~ R$
$\mathbf{M}^{(\max)}{ }_{\pi+\pi-}=1.42 \mathrm{GeV} / \mathrm{c}^{2}$ and $\quad \mathbf{M}^{(\max)_{\mathrm{nK}}^{+}} \boldsymbol{}=1.96 \mathrm{GeV} / \mathrm{c}^{2}$

$$
\text { give } \quad L_{1}{ }^{(\max)}=26.4 \mu 0.5 \quad(\eta)
$$

and $\quad 2 R=b^{(\max)}=\eta L_{1}{ }^{(\max)} / p_{n}=1.00 \mu 0.02 \mathrm{f}$.
$\pi(2 R)^{2}=31.4 \mathrm{mb}$ conforms to empirical value $\sigma^{N N_{\text {inel }}} \sim 32 \mathrm{mb}$.
"Tangential" collision $b=2 R, P_{0}=50 \mathrm{GeV} / \mathrm{c}$

moment of inertia $Y=2 m_{p} R \quad(R=0.50 f)$,
$E_{\text {rot }}=L^{2} / 2 Y \sim 2700 G e V \gg E_{0}$
$E_{\text {rot }}=L^{2} / 2 Y \sim 2700 \mathrm{GeV} \gg \mathrm{E}_{0}$ must be compensated by potential energy $\Delta \mathrm{U} \sim-\mathrm{E}_{\text {rot }}$ of non-equilibr. interaction

Short-life rotational states of pp system ()

$\mathrm{L}=2 R \mathrm{P}_{0}=253 \eta, \mathrm{E}_{\text {rot }}=\mathrm{L}^{2} / 2 \mathrm{Y} \sim 2700 \mathrm{GeV} \gg \mathrm{E}_{0}$,

Shifted on $\Delta \mathrm{E} \sim \mathrm{E}_{\text {rot }}$ rotary state may exist $\tau_{\text {rot }} \sim \eta / \Delta \mathrm{E}$.

Minimum time of inelastic interaction $\tau_{\text {int }} \sim \Delta \mathrm{b} / 2 \mathrm{c} \sim \eta / 2 \mathrm{E}_{0}$

$$
\tau_{\text {int }} / \tau_{\text {rot }} \sim \mathrm{E}_{\text {rot }} / 2 \mathrm{E}_{0} \sim 25 \gg 1
$$

Decelerated rotation and forced emission of mesons

Each appearance of rotary state and interaction $\Delta \mathrm{U}$ with transfer of $\delta \mathrm{P}_{\mathrm{p}}$, to proton-target leads to decreasing of angular momentum of pp-system.

Total angular momentum can keep, if simultaneously with momentum decrease $\delta \mathrm{P}_{\mathrm{p}^{\prime}}$ meson will be emitted with such values $b_{\text {mes }}>b$ and longit. momentum $P_{\text {mes }}$, that $\Delta L_{p}=b\left(\delta P_{p^{\prime}}+P_{\text {mes }}\right)=b_{\text {mes }} P_{\text {mes }}=L_{\text {mes }}$.

Parity of $L_{p}-L_{\text {mes }}$ must be kept for repeated rot. states.
This is fulfilled for σ-meson $0^{+}\left(0^{+}\right)$emission, and $\sigma \rightarrow 2 \pi$

Possible increase of soft photons bremsstahlung

In event with n_{σ} emission n_{σ} sudden accelerations are.

Addition of bremsstahlung amplitudes may increase probability of soft photon radiation with $\Delta>\eta / 50 \mathrm{MeV}$,
which is more than expected from other hypotheses.

Estimates for tang. collision $b=2 R$ with 36π emission In the case of $L_{0}=253 \eta$ and even L_{σ} of 18σ-mesons only $L_{\sigma}=12 \eta$ is suitable value for meson momentum.

Equality $\Delta \mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\sigma}$ gives $\Delta \mathrm{P}_{\mathrm{p}}=\Delta \mathrm{L}_{\mathrm{p}} / 2 \mathrm{R}=2.36 \mathrm{GeV} / \mathrm{c}$ and final longitud. momentum $P_{p}=P_{0}-18 \Delta P_{p}=7.3 \mathrm{GeV} / \mathrm{c}$ of incident proton after 18σ-mesons emission.

Final angular momentum of this proton $L_{p}=2 R P_{p}=$ 37η
(it is value $L_{0}-18 L_{\sigma}=(253-216) \eta=37 \eta$).

Values P_{σ} and $\delta P_{p}=\Delta P_{p}-P_{\sigma}$ depend on parameter b_{σ}.

Estimates for P_{σ} and momentum of proton-target P_{p},
In the case of maximum value $b_{\sigma}=3 R=1.5 \mathrm{f}$
$P_{\sigma}=12 \eta / b_{\sigma}=1.58 \mathrm{GeV} / \mathrm{c}, \delta \mathrm{P}_{\mathrm{p}^{\prime}}=\Delta \mathrm{P}_{\mathrm{p}}-\mathrm{P}_{\sigma}=0.78 \mathrm{GeV} / \mathrm{c}$.
Final p-target momentum $\mathrm{P}_{\mathrm{p}^{\prime}}=18 \delta \mathrm{P}_{\mathrm{p}^{\prime}}=14.22 \mathrm{GeV} / \mathrm{c}$

Difference of velocities of mesons and protons system
$P_{p}+P_{p^{\prime}}=21.56 \mathrm{GeV} / \mathrm{c}=\mathrm{P}_{\mathrm{pp}} \quad \quad$ (longitudinal)
E_{pp} ~ 21.65 GeV (without transverse momentum)

$$
\mathrm{v}_{\mathrm{pp}}{ }^{\prime} \sim 0.995 \mathrm{c}, \quad \gamma_{\mathrm{pp}}{ }^{\prime}=\left(1-\mathrm{v}^{2}{ }_{\mathrm{pp}}{ }^{\prime} / \mathrm{c}^{2}\right)^{-1 / 2} \sim 10
$$

$$
\left(v_{c . m}=0.981 \mathrm{c}, \quad \gamma_{\mathrm{c} . \mathrm{m} .}=5.21\right)
$$

$\mathrm{P}_{18 \mathrm{c}}=28.44 \mathrm{GeV} / \mathrm{c}$ (long.)
$\mathrm{E}_{18 \sigma}=\mathrm{E}_{0}-\mathrm{E}_{\mathrm{p}}-\mathrm{E}_{\mathrm{p}^{\prime}}=29.30 \mathrm{GeV}$
$v_{\sigma} \sim 0.971 c, \quad \gamma_{\sigma} \sim 4.2$

$$
\mathrm{v}_{\mathrm{pp}}{ }^{\prime}>\mathrm{v}_{\text {c.m. } .} \quad \quad \mathrm{v}_{\sigma}<\mathrm{v}_{\text {c.m. }} .\left(\text { Mean }<\mathrm{v}_{\pi}>=\mathrm{v}_{\sigma}\right)
$$

Possible view of events with 36π in s.c.m.

Possible movement of final particles relative to s.c.m.

If this effect exists it may be observed and treated as confirmation of "black balls" model for NN interaction.

Thank you

for attention !

