Neutron Form Factors

Bogdan Wojtsekhowski, Jefferson Lab

- Neutron structure and EM form factors
 Recent experiment ³He(e,e'n) at Jlab
 Flavor decomposition of nucleon FFs
 The transverse neutron densities
- Future GEN&GMN and GMN/GMP at high Q2

Highlights of the neutron

- Prediction: Rutherford 1920
- Discovery: Chadwick 1932
- Magnetic moment:Esterman&Stern 1934, Alvarez&Bloch 1940
- Determination of spin 1/2: Schwinger 1937
- Direct observation of the structure: Hofstadter 1950th
- SLAC measurement of Gⁿ_M up to 10 GeV²
- Time like FFs: DM2, FENICE
- Polarizabilities: SAL, Mainz, Lund
- Polarized electron beam era: Sinclair's electron source in 1977
- CEBAF with polarimeter and polarized targets in 1990th
- Unification of DIS/FFs/DVCS in GPDs by Muller, Ji, Radyushkin
- Gⁿ_M/G^p_M precision measurement by Brooks etal in 2001
- Polarized He-3: laser pumping
- Gⁿ_E/Gⁿ_M measurements at NIKHEF, Mainz, JLab, BATES

Electro-Magnetic Form Factors

One-photon approximation, $\alpha_{em} = 1/137$, hadron current

 $\mathcal{J}^{\mu}_{hadronic} = ie\overline{N}(p') \left| \gamma^{\mu}F_1(Q^2) + rac{i\sigma^{\mu
u}q_{
u}}{2M}F_2(Q^2) \right| N(p)$

At large Q^2 study of G_F require use of

polarization observables - FFs at CEBAF

Rosenbluth (1950)

Akhiezer (1958) Arnold, Carlson and Gross (1981)

Full expression for M has three complex functions, $F_{1\prime}$, $F_{2\prime}$, F_{3}

Guichon & Vanderhaeghen

 $\mathcal{M}=rac{4\pilpha}{O^2}ar{u}'\gamma_\mu u\cdotar{N}'\left(ilde{F_1}\gamma^\mu- ilde{F_2}[\gamma^\mu,\gamma^
u]rac{q_
u}{4M}+ ilde{F_3}K_
u\gamma^
urac{P^\mu}{M^2}
ight)N$ Afanasev et al. Blunden et al. $ilde{G}_{11} = ilde{F}_1 + ilde{F}_2 \qquad ilde{G}_{12} = ilde{F}_1 - au ilde{F}_2$ \tilde{F}_i are functions of (s-u) and told G_{EM} are real functions of $t=-Q^2$ $d\sigma = d\sigma_{_{NS}} \left\{ arepsilon (ilde{G}_{_E} + rac{s-u}{{}^{_A}M^2} ilde{F}_3)^2 + au (ilde{G}_{_M} + arepsilon rac{s-u}{{}^{_A}M^2} ilde{F}_3)^2
ight\},$ Extra terms contribute less $\sigma_{\rm R} = \varepsilon G_{\rm R}^2 + \tau G_{\rm M}^2 +$ $+2 au G_{_M}\mathcal{R}e\left(\delta ilde{G}_{_M}+arepsilonrac{s-u}{M^2} ilde{F_3}
ight)+2arepsilon G_{_E}\,\mathcal{R}e\left(\delta ilde{G}_{_E}+rac{s-u}{M^2} ilde{F_3}
ight)$ than few % to $\sigma_{\rm R}$ slide 3 Bogdan Wojtsekhowski Baldin 2010

Photon - Neutron Interaction

At Q^2 of several GeV² massive photon vibrates in q-qbar, which can't propagate far – already inside of the nucleon => still such q-qbar propagates as a VM

October 4, 2010

slide 4

GPDs of nucleon

Müller (94), Ji (97), Radyushkin (97)

Quark dynamics of nucleon encoded in GPD functions $H(x,\xi,t), \tilde{H}(x,\xi,t)$ hadron helicity-conserving; vector and axial-vector $E(x,\xi,t)$, and $\tilde{E}(x,\xi,t)$ helicity-flipping; tensor and pseudo-scalar

GPDs information

Ji's sum rule for quark orbital momentum

$$\langle L_v^q \rangle = \frac{1}{2} \int_0^1 dx \left[x E_v^q(x, \xi = 0, t = 0) + x q_v(x) - \Delta q_v(x) \right]$$

DVCS will access low t, large Q^2 kinematics

October 4, 2010

slide 6

Bogdan Wojtsekhowski Baldin 2010

3-d picture of the nucleon

 δz_{\perp}

xp

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

 $f(\mathbf{x}, b_{\perp})$

 b_{\perp}

Structure functions, quark longitudinal momentum & helicity distributions

O

Y

 $f(\mathbf{x})$

 δz_{\perp}

хp

October 4, 2010

х

Sachs Form Factors of the nucleon

Recent experiment at Jlab

October 4, 2010

slide 9

Bogdan Wojtsekhowski Baldin 2010

••

Jlab high Q² GEN experiment

✓ Since 1984, when Blankleider&Woloshin suggested ${}^{3}\vec{H}e(\vec{e},e'n)$, several experiments of this type have been performed at NIKHEF-K and Mainz (A1, A3) for Q² up to 0.7 GeV², a big success in part due to a new accurate 3-body calculation possible at low Q² (Glockle et al.)

 ✓ At Q² above 1-2 GeV² Glauber method becomes sufficiently accurate (Sarksian)

✓ Electron-polarized neutron luminosity and high polarization of ³He target made measurement about 10 times more effective than with ND₃. In combination with a large acceptance electron spectrometer the total enhancement is more than 100, which allows to reach 3.5 GeV²

• Polarized target

Require super

- Electron spectrometer
- Neutron detector

October 4, 2010

slide 11

$Hall\,A\,G_E{}^n\,experiment$

$Hall\,A\,G_E{}^n\,experiment$

Beam

$Hall\,A\,G_E{}^n\,experiment$

Beam

October 4, 2010

slide 14

Bogdan Wojtsekhowski Baldin 2010

Electron Spectrometer

Useful $\Delta Q^2/Q^2 \sim 0.1$ with max Ω leads to a large aspect ratio, limited just of 30° for the polar. target. BigBite was designed at NIKHEF for aspect ratio $\Delta \theta / \Delta \phi = 1/5$. Spectrometer has solid angle up to 95 msr.

Neutron Detector

- Match BigBite solid angle for QE kinematics
- Flight distance ~ 10 m
- Operation at 3.10³⁷ cm²/s
- 1.6 x 5 m^2 active area
- 6-7 layers (~ 250 bars)
- 2 veto layers (~ 200)
- 0.38 ns time resolution

October 4, 2010

slide 16

Bogdan Wojtsekhowski Baldin 2010

Target monitoring

small value of $A_{obs} = A_{\parallel} + A_{\perp} \approx 2 - 5\%$

smaller is better for reduction of the systematic errors

Data analysis: step 1 - Time-of-Flight

Raw events (BLACK lines) have significant accidental level and large tail for slower protons RED lines present events after cut on e'-n angular correlation: accidentals and tails almost gone

Analysis: step 2 - q_{perp} vs W; 1.7 GeV² perpendicular "q" = q × tan(θ_{qh}); W² = M² + 2M(E-E') - Q²

Analysis: step 3 - W distribution

for 3.5 GeV² quasi-elastic signal very small in e,e' after angular correlation cut peak is just as suppose to be

The results $G_E^{\ n}$ experiment

The JLab G_E^{n} experiments

without JLab GEn experiments significantly better accuracy for high \mathbf{Q}^2

Recent experiment at Bates

D(e,e'n)

October 4, 2010

slide 23

Bogdan Wojtsekhowski Baldin 2010

Running experiment at Mainz

Flavor view with EMFFs

The goal is understanding of the nucleon

$$F_p = \frac{+2}{3} F_{dual} + \frac{-1}{3} F_{lone}$$

$$F_n = \frac{-1}{3} F_{dual} + \frac{+2}{3} F_{lone}$$

$$F_{1,dual} = F_1^{u,p} = 2F_{1p} + F_{1n}$$
 $F_{1,lone} = F_1^{d,p} = 2F_{1n} + F_{1p}$

$F_1^{d}_{(2)}/F_1^{u}_{(2)}$ with proton and neutron FFs

Lattice calculation => very good agreement with the trend, need accuracy DSE (ANL) => good, possibly a signature of dominant degrees of freedom Our data will require a new fit of E_d and E_u GPDs

October 4, 2010

slide 27

Form Factors ratios

Form Factors ratios

Form Factors ratios

The goal is understanding of the nucleon

- What is a unique signature of the diquark configuration?

$$F_p = \frac{+2}{3} F_{dual} + \frac{-1}{3} F_{lone}$$
$$F_n = \frac{-1}{3} F_{dual} + \frac{+2}{3} F_{lone}$$

The goal is understanding of the nucleon

A diquark configuration?An effect of orbital motion?

$$F_{1,dual} = F_1^{u,p} = 2 F_{1p} + F_{1n} \quad F_{1,lone} = F_1^{d,p} = 2 F_{1n} + F_{1p}$$

Results of E02-013 Hall A GEn

EMFFs and GPDs

Reduction formulas at $\xi = t = 0$ for DIS and $\xi = 0$ for FFs $H^q(x, \xi = 0, t = 0) = q(x)$ $\tilde{H}^q(x, \xi = 0, t = 0) = \Delta q(x)$ $\int_{-1}^{+1} dx H^q(x, 0, Q^2) = F_1^q(Q^2)$ $\int_{-1}^{+1} dx E^q(x, 0, Q^2) = F_2^q(Q^2)$

GMn/GMp and GPDs

 $F_1^d < 0$ presents an interesting challenge to such a model

GPD model (Guidal etal):

$$F_1^u(t) = \int_0^1 dx u_v(x) e^{-t\alpha' \ln x},$$

$$F_1^d(t) = \int_0^1 dx d_v(x) e^{-t\alpha' \ln x}.$$

The transverse neutron densities

Impact parameter GPDs

$$F_1(t) = \sum_q e_q \int dx H_q(x,t)$$
 Muller, Ji, Radyushkin

$$q(x,{
m b})=\int rac{d^2q}{(2\pi)^2}e^{i~{
m q}\cdot{
m b}}H_{_q}(x,t=-{
m q}^2)$$
 M.Burkardt

 $ho(b)\equiv\sum_{a}e_{q}\int dx\;q(x,{
m b})=\int d^{2}qF_{_{1}}({
m q}^{2})e^{i\;{
m q}\cdot{
m b}}$ P.Kroll: u/d segregation

$$ho(b)=\int_0^\infty \; rac{Q\cdot dQ}{2\pi} J_{_0}(Qb) rac{G_E(Q^2)+ au G_M(Q^2)}{1+ au} \qquad ext{G.Miller}$$

center of momentum $R_{\perp} = \sum_{i} x_{i} \cdot r_{\perp,i}$ \boldsymbol{b} is defined relative to \boldsymbol{R}_{\perp}

October 4, 2010

slide 36

Transverse densities

$$\rho_{T}(\vec{b}) = \rho_{U}(b) \\ - \sin(\phi_{b} - \phi_{S}) \int_{0}^{\infty} \frac{dQ}{2\pi} \frac{Q^{2}}{2M} J_{1}(bQ) F_{2}(Q^{2})$$

Flavor decomposition of IMF densities

Density in polarized neutron

Let see how quark rotation leads to u/d separation:

M.Burkardt (2003)

motion inside nucleon

neut Borg Gain Wolts geklaow & kijtse Babdins 120 JDab

October 4, 2010

slide 40

Let see how quark rotation leads to u/d separation:

M.Burkardt (2003)

u-quark

d-quark

October 4, 2010

neutBoogGaEnWoBBsekdaorW&kojtseBabolivs120JDab

u-quark

d-quark

The u/d "separation", observed in Form Factor data, is likely a result of

the collective rotation of the u-quark and the d-quark, which is going in opposite directions

October 4, 2010

slide 43

Bogdan Wojtsekhowski Baldin 2010

Future neutron FFs experiments

October 4, 2010

slide 44

Bogdan Wojtsekhowski Baldin 2010

Future neutron FFs experiments

D(e,e'n)p / D(e,e'p)n – under preparation

Double pol. He-3(e,e'n)pp – under preparation

D(e,e'n)p – requires a new A_Y data from JINR (talk by J. Annand)

Optimization of the experimental setup

Proton magnetic form factor: E12-07-108

Neutron/proton form factors ratio: E12-09-019

Proton form factors ratio, GEp(5): E12-07-109

Neutron form factors ratio, GEn(2):E12-09-016

Bogdan Wojtsekhowski Baldin 2010

Neutron/proton form factors ratio: E12-09-019

D(e,e'n)p / D(e,e'p)n

Neutron form factors ratio, GEn(2):E12-09-016

Double polarized He-3(e,e'n)pp

12 GeV GMn experiment

12 GeV GEn experiment

Cates, Riordan, and BW

CEBAF electron beam in 2013(4)

Beam energy	11/12 GeV
Beam power	1 MW
Beam current (Hall A/D)	85/5 μA
Beam polarization	85%
Emittance @ 12 GeV	10 nm-rad
Energy spread @ 12 GeV	0.02%
Beam spot	~ 0.1mm
 Simultaneous beam delivery 	Up to 3 halls

Hall A will be the first hall which will get the beam

THANKS

October 4, 2010

Bogdan Wojtsekhowski Baldin 2010

Polarized target

³He = p + p + n S + S' + P waves $P_n = 0.86 P_{He}$

Polarization vs time for target cell ''Edna''

Rb + K mixture has shortened spin-up time to 5-8 hours. The hybrid method of optical pumping was used here for the first time in the nuclear target.

October 4, 2010

slide 53

Bogdan Wojtsekhowski Baldin 2010