XX INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS

Measurement of Neutrons in the Pb/U Assembly Irradiated by Relativistic Protons and Deuterons by means of Activation Samples

(XX Baldin seminar)

Vladimír Wagner

Nuclear physics institute of CAS, 250 68 Řež, Czech Republic, E_mail: wagner@ujf.cas.cz

for collaboration "Energy plus transmutation"

(Russia, Belarus, Germany, Greece, Poland, Ukraine, Czech Republic ...)

Neutron production measurements

Neutron reaction cross-sections measurement

Energy + transmutation set-up

Set-up: Lead target: diameter 8.4 cm, length 48 cm Natural uranium blanket: rods with Al cladding total weight 206.4 kg Shielding box: polyethylene with 1 mm Cd on the inside side

Experiments: Proton beam (E = 0.7; 1.0; 1.5 and 2.0 GeV), deuteron beam (E = 1.6; 2.52 and 4.0 GeV)

Our main objectives: Neutron distribution studies – radiation samples

Main task – measurement of spatial distribution of high energy neutrons (E > MeV) by means of threshold reactions

1,0E-03 1,0E-03 1,0E-04 1,0E-04 Yield [1/g*d] Vield [1/g*d] 198Au - 196Au -196Au 📥 194Au 1,0E-05 1,0E-05 📥 194Au 1.0E-06 1.0E-06 12 2 4 6 8 10 0 10 20 30 40 50 Radial distance from the target axis [cm] Longitudinal distance along the target [cm]

Deuteron beam with 4 GeV ! preliminary ! analysis

Systematical comparison with MCNPX simulations:

Review of our proton beam data and their comparison with MCNPX simulations is at:

A. Krása et al: NIM A615 (2010) 70

Determination of integral neutron number

Modified water bath / activation foils method

(K. Van der Meer et al: NIM B 217 (2004) 202)

The homogenous field of neutrons with energy 1 eV – 0.1 MeV is produced inside polyethylene container with 1 mm Cd on the inside side

Many foils $-(n,\gamma)$ reactions produced by epithermal (resonance) neutrons

$$M_{\rm n}^{\rm exp} = M_{\rm n}^{\rm sim} \langle \frac{N_{\rm yield}^{\rm exp}}{N_{\rm yield}^{\rm sim}} \rangle$$

where M_n – integral number of produced neutrons N_{yield} – number of produced radioactive nuclei at foil

 $^{197}Au(n,\gamma)^{198}Au$

 $^{181}Ta(n,\gamma)^{182}Ta$

Test by means of simple lead target inside E+T container

Comparison of our obtained number of neutrons per proton with all other neutron numbers from different experiments

Systematic of E+T experiments with different proton and deuteron beams (energy from 0.7 GeV up to 2.52 GeV)

A. Krása et al: NIM A615 (2010) 70

100

80

60

40

20

0+0

Neutrons per beam particle

xperiments	Experiment	E _{beam} [GeV]	$\left< \frac{N_{\text{yield}}^{\text{exp}}}{N_{\text{yield}}^{\text{sim}}} \right>$	M ^{exp} _n	M _n ^{sim}	M ^{exp}
ergy from GeV)	p+Pb p+Pb/U	0.885 0.7 1.0 1.5 2.0	$0.87(5) \\ 1.32(4) \\ 1.12(4) \\ 1.18(5) \\ 1.37(2)$	14.8(2.2) 26.3(2.2) 35.4(3.3) 55.4(3.3)	17.0 20.0 31.6 46.8	- 27(2) 39(3) 62(5) 82(6)
515 (2010) 70	d+Pb/U	2.0 1.6 2.52	1.32(6) 1.16(3)	82.5(5.9) 75(9) 97(10)	56.6 84.3	64(5) 101(9)
				 E+T experiment - protons E+T experiment - deuterons E+T simulation - protons E+T simulation - deuterons Pb-target experiment Pb-target simulation Pb-target - experimental fit 		
1		2	3			

Beam energy [GeV]

M. Zamani-Valasiadou et al: Annals of Nucl.Ener 37(2010)241

S. Stoulos et al: NIM A599(2009)106

Integral neutron number studied by tantalum

E(deuteron) = 2.52 GeV

Experiment/Simulation:

Tantalum : 1.131(23) Gold: 1.16(3)

E(deuteron] = 4 GeV

Experiment/Simulation Au ~ 1.7

 $M_n^{sim} = 112.5 \rightarrow M_n^{exp} \sim 189$

Ta ~ 1.4

Results using tantalum looks similar as for gold Main source of uncertainties is determination of beam protons number

Measurement of neutron reaction cross/sections

Quasi-monoenergetic neutron source: protons from cyclotron + lithium target

NPI ASCR Řež: Energy range 18 -37 MeV, neutron intensity ~ 10⁸ neutron cm⁻² s⁻¹

TSL Uppsala: Energy range 25 – 200 MeV neutron intensity ~ 10⁵ neutron cm⁻² s⁻¹

Advantage of two neutron sources: very wide energy range, partial overlap – better estimation of systematical uncertainties

Some details about measurements and analysis

Measured materials: All irradiations: Al, Au, Bi, Ta, In and I Some irradiations: Y, Co, Zn, Fe, Cu, Ni and Mg

NPI ASCR Řež:

4 measurements: neutron energies 17.5; 21.9; 30.4 and 35.9 MeV

TSL Uppsala:

First set (2008): neutron energies 22; 47 and 94 MeV

Problem of background subtraction → important to have data for many neutron (proton) energies

Second set (2010): proton energies 62; 70; 80 and 93 MeV

Main uncertainties: 1) Gauss shape fit > 1 % 2) Efficiency ~ 3 % 3) Spectroscopic corrections ~1 % 4) Neutron beam integral ~ 5 % (NPI), 10 % (TSL) 5) Neutron spectrum definition – background substraction

Supported by:

EFNUDAT C

Neutron spectra for different proton energies (NPI ASCR Řež)

Example of different influence of background

Examples of results

Uppsala February 2010 ! PRELIMINARY ! results

Conclusions

- Using "Energy plus Transmutation" set-up on JINR Dubna accelerator (different proton and deuteron energies) nice set of data for ADTT benchmark were obtained.
- Epithermal and resonance neutrons (¹⁹⁸Au production, newly we test also ¹⁸²Ta production) inform us about changes of integral neutron production with beam energy (experiments with shielding container).
- The biggest source of experimental uncertainties is inaccuracy of beam parameters determination
- The neutron production per beam particle end energy unit is approximately same for protons with energy from 0.7 GeV up to 2 GeV and deuterons with energy from 1.6 GeV up to 4 GeV.
- The quasimonoenergetic neutron sources are good tool for neutron cross-sections measurements, perfect knowledge of these cross-sections is important for measurements of neutron field by means of activation detectors.
- By means of Řež and Uppsala neutron sources we obtained nice set of neutron reaction cross-sections
- Such cross-section data are very important step to more effective usage of activation neutron detectors

BIG THANKS

to students

Diploma and PhD students:

Antonín Krása Mitja Majerle Ondřej Svoboda Jitka Vrzalová Martin Suchopár

Other students: Ondřej Sláma Anne Laredo Daniel Wagner

