Long-Range Rapidity Correlations
 in the Model with Independent Emitters

V.V. Vechernin
St.-Petersburg State University
E-mail: vechernin@pobox.spbu.ru

Long Range Rapidity Correlations
two rapidity intervals separated by a gap

- the event multiplicity in the BACKWARD or FORWARD rapidity windows.

$$
\left\langle n_{B}\right\rangle_{n_{F}} \equiv f\left(n_{F}\right) \text { - the correlation function (regression) }
$$

The linear correlation function (linear regression):

$$
\left\langle n_{B}\right\rangle_{n_{F}}=a^{a b s}+b^{a b s} n_{F}
$$

$$
\begin{gathered}
\frac{\left\langle n_{B}\right\rangle_{n_{F}}}{\left\langle n_{B}\right\rangle}=a^{r e l}+b^{r e l} \frac{n_{F}-\left\langle n_{F}\right\rangle}{\left\langle n_{F}\right\rangle}=a^{r e l}+b^{r e l}\left(\frac{n_{F}}{\left\langle n_{F}\right\rangle}-1\right) \\
b^{r e l}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b^{a b s}, \quad a^{r e l}=\frac{\left\langle n_{B}\right\rangle_{n_{F}=\left\langle n_{F}\right\rangle}}{\left\langle n_{B}\right\rangle}
\end{gathered}
$$

For a nonlinear correlation function $\left\langle n_{B}\right\rangle_{n_{F}}=f\left(n_{F}\right)$ (nonlinear regression), expanding in powers of $\left[n_{F}-\left\langle n_{F}\right\rangle\right]$ we have

$$
\left\langle n_{B}\right\rangle_{n_{F}} \equiv f\left(n_{F}\right)=f_{0}+f_{1}\left[n_{F}-\left\langle n_{F}\right\rangle\right]+f_{2}\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{2}+f_{3}\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{3}+\ldots
$$

$$
\left.b^{a b s} \equiv \frac{d\left\langle n_{B}\right\rangle_{n_{F}}}{d n_{F}}\right|_{n_{F}=\left\langle n_{F}\right\rangle}=f_{1}, \quad b^{r e l}=\left.\frac{d\left\langle n_{B}\right\rangle_{n_{F}} /\left\langle n_{B}\right\rangle}{d n_{F} /\left\langle n_{F}\right\rangle}\right|_{n_{F}=\left\langle n_{F}\right\rangle}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b^{a b s}
$$

$$
\left\langle n_{B}\right\rangle_{n_{F}=\left\langle n_{F}\right\rangle}=f\left(\left\langle n_{F}\right\rangle\right)=f_{0}, \quad a^{r e l}=\frac{\left\langle n_{B}\right\rangle_{n_{F}=\left\langle n_{F}\right\rangle}}{\left\langle n_{B}\right\rangle}
$$

To exclude the trivial dependence on the lengths of the forward Δy_{F} and backward Δy_{B} rapidity windows we define the correlation coefficient $b^{r e l}$ using the scaled variables:

Definition 1 :

$$
\left.b^{r e l} \equiv \frac{d\left\langle n_{B}\right\rangle_{n_{F}} /\left\langle n_{B}\right\rangle}{d n_{F} /\left\langle n_{F}\right\rangle}\right|_{n_{F}=\left\langle n_{F}\right\rangle}=\left.\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} \frac{d\left\langle n_{B}\right\rangle_{n_{F}}}{d n_{F}}\right|_{n_{F}=\left\langle n_{F}\right\rangle}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b^{a b s}
$$

where $\left\langle n_{F}\right\rangle$ and $\left\langle n_{B}\right\rangle$ are the mean multiplicities in the forward and backward rapidity windows. The $\left\langle n_{B}\right\rangle_{n_{F}}$ is the correlation function (regression) - the mean multiplicity in the backward window Δy_{B} as a function of the multiplicity in the forward window Δy_{F}.

In the framework of the model with independent emitters in paper [1] using methods developed in [2] under some very specific assumptions the following formula for the defined correlation coefficient $b^{r e l}$ was obtained:

$$
b^{r e l}=\frac{\kappa \bar{\mu}_{F}}{\kappa \bar{\mu}_{F}+1}
$$

Here the κ is the ratio of two scaled variances:

$$
\kappa=\frac{V_{N}}{V_{\mu_{F}}}, \quad V_{N}=\frac{D_{N}}{\langle N\rangle}, \quad V_{\mu_{F}}=\frac{D_{\mu_{F}}}{\bar{\mu}_{F}}
$$

$\langle N\rangle$ and $D_{N}=\left\langle N^{2}\right\rangle-\langle N\rangle^{2}$ - the mean number of emitters and the event-by-event variance of the number of emitters.
$\bar{\mu}_{F}$ and $D_{\mu_{F}}=\overline{\mu_{F}^{2}}-\bar{\mu}_{F}^{2}$ - the mean multiplicity produced by one emitter in the forward window and the corresponding variance.

1. V.V. Vechernin, R.S. Kolevatov, hep-ph/0304295 (2003); Vestnik SPbU, ser.4, no.2, 12 (2004).
2. M.A. Braun, C. Pajares and V.V. Vechernin, Phys. Lett. B493, 54 (2000).

For Poisson distributions $V_{N}=V_{\mu_{F}}=1$ and $\kappa=1$. Clear that the $\bar{\mu}_{F}$ is depends on the length of the forward rapidity window. In a first approximation we can assume

$$
\bar{\mu}_{F}=\mu_{0 F} \Delta y_{F}
$$

where $\mu_{0 F}$ is the average multiplicity produced by one emitter in the forward window per a unit of rapidity.

$$
b^{r e l}=\frac{\kappa \mu_{0 F} \Delta y_{F}}{\kappa \mu_{0 F} \Delta y_{F}+1} .
$$

So the multiplicity correlation coefficient $b^{r e l}$ even defined for scaled variables nevertheless depends through μ_{F} on the length of the forward rapidity window Δy_{F} and does not depend on the length of the backward one Δy_{B}.

This is because the regression procedure is being made by the forward window. One can find the physical discussion of this phenomenon in ref.:
V.V. Vechernin, R.S. Kolevatov, hep-ph/0304295 (2003); Vestnik SPbU, ser.4, no.2, 12 (2004).

For a linear correlation function:

$$
\left\langle n_{B}\right\rangle_{n_{F}}=a^{a b s}+b^{a b s} n_{F}, \quad \frac{\left\langle n_{B}\right\rangle_{n_{F}}}{\left\langle n_{B}\right\rangle}=a^{r e l}+b^{r e l}\left(\frac{n_{F}}{\left\langle n_{F}\right\rangle}-1\right)
$$

we have exactly:

$$
\begin{gathered}
b^{a b s}=\frac{\left\langle n_{B} n_{F}\right\rangle-\left\langle n_{B}\right\rangle\left\langle n_{F}\right\rangle}{\left\langle n_{F}^{2}\right\rangle-\left\langle n_{F}\right\rangle^{2}}=\frac{\left\langle n_{B} n_{F}\right\rangle-\left\langle n_{B}\right\rangle\left\langle n_{F}\right\rangle}{D_{n_{F}}}, \quad b^{r e l}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b^{a b s} \\
a^{r e l}=\frac{\left\langle n_{B}\right\rangle_{n_{F}=\left\langle n_{F}\right\rangle}}{\left\langle n_{B}\right\rangle}=1
\end{gathered}
$$

So we can take as

Definition 2 :

$$
b^{a b s}=\frac{\left\langle n_{B} n_{F}\right\rangle-\left\langle n_{B}\right\rangle\left\langle n_{F}\right\rangle}{\left\langle n_{F}{ }^{2}\right\rangle-\left\langle n_{F}\right\rangle^{2}}, \quad b^{\text {rel }}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b^{a b s}
$$

Note that for a nonlinear correlation function $\left\langle n_{B}\right\rangle_{n_{F}}=f\left(n_{F}\right)$
Definition $1 \neq$ Definition 2

If we use the Definition 2

we can obtain the above formula for $b^{r e l}$ at very general assumptions.
Because to calculate such defined correlation coefficient we need not to calculate the correlation function $\langle B\rangle_{F}=f(F)$, but only four averages: $\langle F\rangle,\langle B\rangle,\langle B F\rangle$ and $\left\langle F^{2}\right\rangle$.

Calculation of the correlation coefficient

Simplified notations:

$$
\begin{gathered}
\langle B\rangle_{F}=a+b F, \quad F \equiv n_{F}, \quad B \equiv n_{B} \\
P(B, F) \text { - basic }, \quad \sum_{B, F} P(B, F)=1, \quad\langle B F\rangle \equiv \sum_{B, F} B F P(B, F) \\
P(F)=\sum_{B} P(B, F), \quad \sum_{F} P(F)=1, \quad\langle F\rangle \equiv \sum_{F} F P(F)=\sum_{B, F} F P(B, F) \\
P(B)=\sum_{F} P(B, F), \quad \sum_{B} P(B)=1, \quad\langle B\rangle \equiv \sum_{B} B P(B)=\sum_{B, F} B P(B, F) \\
P(B, F)=P(F) P_{F}(B) \Rightarrow P_{F}(B)=P(B, F) / P(F) \quad\langle B\rangle_{F} \equiv \sum_{B} B P_{F}(B)
\end{gathered}
$$

For independent identical emitters:

$$
P(B, F)=\sum_{N} w(N) \sum_{B_{1}, \ldots, B_{N}} \sum_{F_{1}, \ldots, F_{N}} \delta_{B} B_{1}+\ldots+B_{N} \delta_{F} F_{1}+\ldots+F_{N} \prod_{i=1}^{N} p\left(B_{i}, F_{i}\right)
$$

For LRC:

$$
p\left(B_{i}, F_{i}\right)=p_{B}\left(B_{i}\right) p_{F}\left(F_{i}\right)
$$

Clear that for identical emitters:

$$
\begin{array}{lll}
\sum_{F_{i}} p_{F}\left(F_{i}\right)=1, & \sum_{F_{i}} F_{i} p_{F}\left(F_{i}\right)=\bar{\mu}_{F}, & \sum_{F_{i}} F_{i}^{2} p_{F}\left(F_{i}\right)=\overline{\mu_{F}^{2}} \\
\sum_{B_{i}} p_{B}\left(B_{i}\right)=1, & \sum_{B_{i}} B_{i} p_{B}\left(B_{i}\right)=\bar{\mu}_{B}, & \sum_{B_{i}} B_{i}^{2} p_{B}\left(B_{i}\right)=\overline{\mu_{B}^{2}}
\end{array}
$$

We denote also

$$
\sum_{N} w(N)=1, \quad \sum_{N} N w(N)=\langle N\rangle, \quad \sum_{N} N^{2} w(N)=\left\langle N^{2}\right\rangle
$$

The variances:

$$
D_{N}=\left\langle N^{2}\right\rangle-\langle N\rangle^{2} \quad, \quad D_{\mu_{F}}=\overline{\mu_{F}^{2}}-\bar{\mu}_{F}^{2}
$$

and the scaled variances:

$$
V_{N}=D_{N} /\langle N\rangle \quad, \quad V_{n_{F}}=D_{\mu_{F}} / \bar{\mu}_{F}
$$

Calculation of $\left\langle n_{F}^{2}\right\rangle \equiv\left\langle F^{2}\right\rangle$ as an example

$$
\begin{gathered}
\left\langle n_{F}^{2}\right\rangle \equiv\left\langle F^{2}\right\rangle \equiv \sum_{F} F^{2} P(F)=\sum_{F} F^{2} \sum_{N} w(N) \sum_{F_{1}, \ldots, F_{N}} \delta_{F} F_{1}+\ldots+F_{N} \prod_{i=1}^{N} p_{F}\left(F_{i}\right)= \\
=\sum_{N} w(N) \sum_{F_{1}, \ldots, F_{N}}\left(F_{1}+\ldots+F_{N}\right)^{2} \prod_{i=1}^{N} p_{F}\left(F_{i}\right)= \\
=\sum_{N} w(N) \sum_{F_{1}, \ldots, F_{N}}\left[\sum_{i=1}^{N} F_{i}^{2}+\sum_{i \neq j=1}^{N} F_{i} F_{j}\right] \prod_{i=1}^{N} p_{F}\left(F_{i}\right)= \\
=\sum_{N} w(N)\left[N \overline{\mu_{F}^{2}}+\left(N^{2}-N\right) \bar{\mu}_{F}^{2}\right]=\langle N\rangle \overline{\mu_{F}^{2}}+\left(\left\langle N^{2}\right\rangle-\langle N\rangle\right) \bar{\mu}_{F}^{2}= \\
=\langle N\rangle\left(\overline{\mu_{F}^{2}}-\bar{\mu}_{F}^{2}\right)+\left\langle N^{2}\right\rangle \bar{\mu}_{F}^{2}
\end{gathered}
$$

So we find

$$
\left\langle n_{F}^{2}\right\rangle=\langle N\rangle D_{\mu_{F}}+\left\langle N^{2}\right\rangle \bar{\mu}_{F}^{2}
$$

and

$$
D_{n_{F}} \equiv\left\langle n_{F}^{2}\right\rangle-\left\langle n_{F}\right\rangle^{2}=\langle N\rangle D_{\mu_{F}}+\left\langle N^{2}\right\rangle \bar{\mu}_{F}^{2}-\langle N\rangle^{2} \bar{\mu}_{F}^{2}=\langle N\rangle D_{\mu_{F}}+D_{N} \bar{\mu}_{F}^{2}
$$

Gathering we find

$$
b^{a b s} \equiv \frac{\langle B F\rangle-\langle B\rangle\langle F\rangle}{\left\langle F^{2}\right\rangle-\langle F\rangle^{2}}=\frac{\langle B F\rangle-\langle B\rangle\langle F\rangle}{D_{n_{F}}}=\frac{D_{N} \bar{\mu}_{B} \bar{\mu}_{F}}{\langle N\rangle D_{\mu_{F}}+D_{N} \bar{\mu}_{F}^{2}}
$$

and

$$
b^{r e l}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b^{a b s}=\frac{\langle N\rangle \bar{\mu}_{F}}{\langle N\rangle \bar{\mu}_{B}} b^{a b s}=\frac{\bar{\mu}_{F}}{\bar{\mu}_{B}} b^{a b s}=\frac{D_{N} \bar{\mu}_{F}^{2}}{\langle N\rangle D_{\mu_{F}}+D_{N} \bar{\mu}_{F}^{2}}=\frac{\kappa \bar{\mu}_{F}}{\kappa \bar{\mu}_{F}+1},
$$

where the κ is the ratio of two scaled variances:

$$
\begin{gathered}
\kappa=\frac{V_{N}}{V_{\mu_{F}}}, \quad V_{N}=\frac{D_{N}}{\langle N\rangle}, \quad V_{\mu_{F}}=\frac{D_{\mu_{F}}}{\bar{\mu}_{F}} \\
D_{N}=\left\langle N^{2}\right\rangle-\langle N\rangle^{2}, \quad D_{\mu_{F}}=\overline{\mu_{F}^{2}}-\bar{\mu}_{F}^{2}
\end{gathered}
$$

Comparing the definitions

In the case of nonlinear regression:

$$
\left\langle n_{B}\right\rangle_{n_{F}} \equiv f\left(n_{F}\right)=f_{0}+f_{1}\left[n_{F}-\left\langle n_{F}\right\rangle\right]+f_{2}\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{2}+f_{3}\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{3}+\ldots
$$

Definition $1 \neq$ Definition 2

By Definition 1 :

$$
\left.\bar{b}^{a b s} \equiv \frac{d\left\langle n_{B}\right\rangle_{n_{F}}}{d n_{F}}\right|_{n_{F}=\left\langle n_{F}\right\rangle}=f_{1}, \quad \bar{b}^{r e l}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} \bar{b}^{a b s}
$$

By Definition 2 :

$$
b^{a b s}=\frac{\left\langle n_{B} n_{F}\right\rangle-\left\langle n_{B}\right\rangle\left\langle n_{F}\right\rangle}{\left\langle n_{F}{ }^{2}\right\rangle-\left\langle n_{F}\right\rangle^{2}}=\frac{\left\langle n_{B} n_{F}\right\rangle-\left\langle n_{B}\right\rangle\left\langle n_{F}\right\rangle}{D_{n_{F}}}, \quad b^{r e l}=\frac{\left\langle n_{F}\right\rangle}{\left\langle n_{B}\right\rangle} b^{a b s}
$$

$$
b^{a b s}-\bar{b}^{a b s}=\frac{f_{2}\left\langle\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{3}\right\rangle+f_{3}\left\langle\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{4}\right\rangle+\ldots}{D_{n_{F}}}
$$

Coefficient $a^{\text {rel }}$

$$
\begin{gathered}
a^{r e l}=\frac{\left\langle n_{B}\right\rangle_{n_{F}=\left\langle n_{F}\right\rangle}=\frac{f\left(\left\langle n_{F}\right\rangle\right)}{\left\langle n_{B}\right\rangle}}{\left\langle f\left(n_{F}\right)\right\rangle} \\
\left\langle n_{B}\right\rangle_{n_{F}} \equiv f\left(n_{F}\right)=f_{0}+f_{1}\left[n_{F}-\left\langle n_{F}\right\rangle\right]+f_{2}\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{2}+f_{3}\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{3}+\ldots \\
\left\langle n_{B}\right\rangle_{n_{F}=\left\langle n_{F}\right\rangle}=f\left(\left\langle n_{F}\right\rangle\right)=f_{0} \\
\left\langle n_{B}\right\rangle=\left\langle f\left(n_{F}\right)\right\rangle=f_{0}+f_{2}\left\langle\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{2}\right\rangle+f_{3}\left\langle\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{3}\right\rangle+\ldots \\
\left\langle n_{B}\right\rangle-\left\langle n_{B}\right\rangle_{n_{F}=\left\langle n_{F}\right\rangle}=f_{2} D_{n_{F}}+f_{3}\left\langle\left[n_{F}-\left\langle n_{F}\right\rangle\right]^{3}\right\rangle+\ldots
\end{gathered}
$$

So $a^{\text {rel }}=1$ for linear correlation function.
In the next (quadratic) approximation:
If $a^{r e l}<1$ - the correlation function is convex downwards: $f_{2}>0$.
If $a^{\text {rel }}>1$ - the correlation function is convex upwards: $f_{2}<0$.

Conclusions

\diamond The formula for the long-range multiplicity correlation coefficient in the model with independent emitters is obtained at very general assumptions:

$$
b^{r e l}=\frac{\kappa \bar{\mu}_{F}}{\kappa \bar{\mu}_{F}+1},
$$

where the κ is the ratio of two scaled variances: $\kappa=\frac{V_{N}}{V_{\mu_{F}}}, V_{N}=\frac{D_{N}}{\langle N\rangle}, V_{\mu_{F}}=\frac{D_{\mu_{F}}}{\bar{\mu}_{F}}$ and $\bar{\mu}_{F}$ - the mean multiplicity produced by one emitter in the forward window.
\diamond The multiplicity correlation coefficient defined for scaled variables nevertheless depends through μ_{F} on the length of the forward rapidity window Δy_{F} and does not depend on the length of the backward one Δy_{B} :

$$
b^{\text {rel }}=\frac{\kappa \mu_{0 F} \Delta y_{F}}{\kappa \mu_{0 F} \Delta y_{F}+1}, \quad \bar{\mu}_{F}=\mu_{0 F} \Delta y_{F}
$$

where $\mu_{0 F}$ is the average multiplicity produced by one emitter in the forward window per a unit of rapidity.
\diamond This is due to the regression procedure is being made by the forward window.
One can find the physical discussion of this phenomenon in ref.:
V.V. Vechernin, R.S. Kolevatov, hep-ph/0304295 (2003); Vestnik SPbU, ser.4, no.2, 12 (2004).
\diamond ALICE

