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M. Nagy (IP, Bratislava, Slovakia)

Outline:

• Motivation

• The S-matrix formalism for N coupled channels

• Analysis of the IGJP C = 0+2++ sector

• Analysis of the isovector F -wave of ππ scattering

• Discussion and conclusions

Reported results were published in part in: Yu.S.Surovtsev,
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Motivation

We present results of the coupled-channel analysis of data on

processes ππ → ππ, KK, ηη in the IGJP C = 0+2++ sector and

on the ππ scattering in the 1+3−− sector.

0+2++: From 13 resonances, discussed in the PDG issue

(C.Amsler et al. (PDG), PL B 667 (2008) 1), the 9 ones (f2(1430),

f2(1565), f2(1640), f2(1810), f2(1910), f2(2000), f2(2020),

f2(2150), f2(2220)) must be confirmed in various experiments

and analyses.

In analysis of pp → ππ, ηη, ηη′ (V.V.Anisovich et al., IJMP A 20

(2005) 6327), 5 resonances – f2(1920), f2(2000), f2(2020),

f2(2240) and f2(2300) – have been obtained, where the

f2(2000)) is a candidate for a glueball.

In our analysis of ππ → ππ, KK, ηη (SBKN-PRD’2010) we

supported the conclusion about the f2(2000).



This sector might be interested more because here multi-quark

states might be observed as separate states, whereas in the

scalar sector they (owing to their very large width) can be

manifest themselves only in distortion of the qq̄ picture.

IGJP C = 1+3−− : In our multi-channel analysis (Yu.S.Surovtsev,

P.Bydžovský, Frascati Phys. Series XLVI (2007) 1535; NP A 807

(2008) 145; SBKN-PRD’2010) of the P -wave ππ scattering data

(S.D.Protopopescu et al., PR D 7 (1973) 1279; B.Hyams et al., NP B

64 (1973) 134; P.Estabrooks, A.D.Martin, NP B 79 (1974) 301) and in

re-analysis of e+e− → ωπ0 (I.Yamauchi, T.Komada, Frascati Phys.

Series XLVI (2007) 445), there was confirmed the old issue

(N.M. Budnev et al., PL B 70 (1977) 365) that the 1st ρ-like meson

is ρ(1250) unlike ρ(1450). For the ρ(1250) there are the

possible SU(3) partners: the isodoublet K∗(1410) and the

isoscalar ω(1420), for which one obtains the mass values in

range 1350-1460 MeV in various works (PDG’08). The GM-O

formula gives for the mass of the 8th component of this octet

the value about 1460 MeV.



The result about the ρ(1250) is consistent with predictions

of some quark models (S.B.Gerasimov, A.B.Govorkov, ZP C 13

(1982) 43; 29 (1985) 61; E. van Beveren, G.Rupp, T.A.Rijken,

C.Dullemond, PR D 27 (1983) 1527). However, if existence of

the ρ(1250) is confirmed, the mainstream quark-potential

models, e.g., (S.Godfrey, N.Isgur, PR D 32 (1985) 189) will

require substantial revisions. In these models, the first ρ-like

meson is usually predicted by about 200 MeV higher than the

ρ(1250), and also the first K∗-like meson is obtained at

1580 MeV, whereas the corresponding well established

resonance has the mass of 1410 MeV. To the point, in the

isoscalar-scalar and isoscalar-tensor sectors, there are also

disagreements with predictions of the indicated model, e.g.,

with respect to the f0(600) and f0(1500) in the scalar sector

and to the 2nd qq̄ nonet in the tensor sector.

Therefore, it is important to check if the result on the

ρ(1250) is supported by investigation of other mesonic

sectors.



Considering in the (J, M2)-plane the corresponding

daughter ρ-trajectory, related to the ρ(1250), one can

conclude that there should exist the 1+3−−-state at about

1950 MeV –”ρ3(1950)”. Therefore, it is worth testing this

by analyzing accessible data on the F -wave ππ scattering

(B.Hyams et al., NP B 64 (1973) 134).

In this investigation, we applied the multi-channel

S-matrix approach (SBKN-PRD’2010). To generate

resonance poles and zeros on the Riemann surface, there

are used multi-channel Breit–Wigner forms taking into

account the Blatt–Weisskopf barrier factors, conditioned

by spins of resonances (J.Blatt, V.Weisskopf, ”Theoretical nuclear

physics”, Wiley, N.Y., 1952).



The S-matrix formalism for N coupled

channels

The N-channel S-matrix is determined on the 2N -sheeted

Riemann surface. The elements Sab (a, b = 1, 2, · · · , N

denote channels) have the right-hand cuts along the real

axis of the s complex plane (s is the invariant total energy

squared), related to the considered channels and starting

with the channel thresholds si (i = 1, · · · , N), and the

left-hand cuts related to the crossed channels.

The main model-independent part of resonance

contributions is given by poles and zeros on the Riemann

surface. Generally this representation of resonances is

obtained with the help of formulas of analytic

continuations of the matrix elements for the coupled

processes to unphysical sheets of the Riemann surface,

performed for the N-channel case in (D.Krupa,

V.Meshcheryakov, Yu.Surovtsev, NC A 109 (1996) 281).



The Le Couteur–Newton relations (K.J.LeCouteur,

Proc.Roy.Soc. A 256 (1960) 115; R.G.Newton, J.Math.Phys. 2 (1961)

188) are used to generate the resonance poles and zeros on

the Riemann surface. These relations express the

S-matrix elements of all coupled processes in terms of the

Jost matrix determinant d(k1, · · · , kN) (ki = 1
2

√
s − si)

that is a real analytic function with the only branch-points

at ki = 0:

Saa =
d(k1, · · · , ka−1, −ka, ka+1, · · · , kN)

d(k1, · · · , kN)
,

SaaSbb−S2
ab =

d(k1, · · · , ka−1, −ka, ka+1, · · · , kb−1, −kb, kb+1, · · · , kN)

d(k1, · · · , kN)
.

The real analyticity implies d(s∗) = d∗(s) for all s.

The N-channel unitarity requires

|d(k1, · · · , −ka, · · · , kN)| ≤ |d(k1, · · · , kN)|, a = 1, · · · , N,

|d(−k1, · · · , −ka, · · · , −kN)| = |d(k1, · · · , ka, · · · , kN)|
to hold for physical s-values.



The d-function is taken as d = dBdres. For the resonance

part dres there are used multi-channel Breit–Wigner forms

dres(s) =
∏

r

[

M2
r − s − i

N
∑

i=1

ρ2J+1
ri Rrif

2
ri

]

where ρri = 2ki/
√

M2
r − si, f2

ri/Mr indicates to the

partial width; Rri(s, Mr, si, rri) is the Blatt–Weisskopf

barrier factors with si the channel threshold, rri a radius

of the i-channel decay of the state ”r”.

The background part dB is introduced by a natural way:

just when some channel is open, in the background there

are arisen the corresponding elastic and inelastic phase

shifts.

dB = exp



−i
N
∑

i=1

(

√

s − si

s

)2J+1

(ai + ibi)



 .



From the formulas of analytic continuations of the matrix

elements for the coupled processes to unphysical sheets of

the Riemann surface (D.Krupa, V.Meshcheryakov, Yu.Surovtsev,

NC A 109 (1996) 281), one can conclude that only on the

sheets with the numbers 2i (i = 1, · · · , N), i.e. II, IV,

VIII, XVI,..., the analytic continuations have the form

∝ 1/SI
ii. This means that the pole positions of resonances

only on these sheets are at the same points of the s-plane,

as the resonance zeros on the physical sheet, and are not

shifted due to the coupling of channels. Therefore, the

resonance parameters should be calculated from the pole positions

only on these sheets.

In the 4-channel cases, considered below, we have the

16-sheeted Riemann surface; to sheets II, IV, VIII, and

XVI there correspond the following signs of analytic

continuations of the quantities Im
√

s − s1, Im
√

s − s2,

Im
√

s − s3, and Im
√

s − s4: − + ++, + − ++, + + −+,

and + + +−, respectively.



Analysis of the IGJPC = 0+2++ sector

When analyzing the isoscalar D-waves of processes

ππ → ππ, KK, ηη, we considered explicitly also the

channel (2π)(2π) (i = 4). I.e. for the resonance part of

the function d(
√

s − s1,
√

s − s2,
√

s − s3,
√

s − s4) should

be applied the 4-channel Breit-Wigner form. The

Blatt–Weisskopf barrier factor for a particle with J = 2 is

Rri =
9 + 3

4
(
√

M2
r − si rri)

2 + 1
16

(
√

M2
r − si rri)

4

9 + 3
4
(
√

s − si rri)2 + 1
16

(
√

s − si rri)4

with radii of 0.943 fm for all resonances in all channels,

except for f2(1270) and f2(1960) for which they are: for

f2(1270), 1.498, 0.708 and 0.606 fm in channels ππ, KK

and ηη, for f2(1960), 0.296 fm in channel KK.



dB = exp



−i
3
∑

n=1

(

√

s − sn

s

)5

(an + ibn)



 .

a1 = α11+
s − 4m2

K

s
α12 θ(s−4m2

K)+
s − sv

s
α10 θ(s−sv)),

bn = βn +
s − sv

s
γn θ(s − sv).

sv ≈ 2.274 GeV2 is the combined threshold of channels

ηη′, ρρ, ωω.

The data for the ππ scattering are taken from an

energy-independent analysis by B.Hyams et al. (NP B 64

(1973) 134; ibid. 100 (1975) 205).

The data for ππ → KK, ηη are taken from works

(S.J.Lindenbaum, R.S.Longacre, PL B 274 (1992) 492; R.S.Longacre et

al., PL B 177 (1986) 223).



A satisfactory description (the total

χ2/NDF = 161.147/(168 − 65) ≈ 1.56) is obtained already

with ten resonances f2(1270), f2(1430), f ′
2(1525),

f2(1580), f2(1730), f2(1810), f2(1960), f2(2000), f2(2240)

and f2(2410) and also with eleven states when adding one

more resonance f2(2020) which is needed in the combined

analysis of processes pp → ππ, ηη, ηη′ (V.V.Anisovich et al.,

IJMP A 20 (2005) 6327). Description in the latter case is

practically the same one as in the case of ten resonances:

the total χ2/NDF = 156.617/(168 − 69) ≈ 1.58.

In the following figures we demonstrate our fitting to the

data.
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The parameters of Breit–Wigner forms for 10 states (in MeV).

State Mr fr1 fr2 fr3 fr4

f2(1270) 1275.3±1.8 470.8±5.4 201.5±11.4 90.4±4.76 22.4±4.6

f2(1430) 1450.8±18.7 128.3±45.9 562.3±142 32.7±18.4 8.2±65

f ′

2(1525) 1535±8.6 28.6±8.3 253.8±78 92.6±11.5 41.6±160

f2(1600) 1601.4±27.5 75.5±19.4 315±48.6 388.9±27.7 127±199

f2(1710) 1723.4±5.7 78.8±43 289.5±62.4 460.3±54.6 107.6±76.7

f2(1810) 1761.8±15.3 129.5±14.4 259±30.7 469.7±22.5 90.3±90

f2(1960) 1962.8±29.3 132.6±22.4 333±61.3 319±42.6 65.4±94

f2(2000) 2017±21.6 143.5±23.3 614±92.6 58.8±24 450.4±221

f2(2240) 2207±44.8 136.4±32.2 551±149 375±114 166.8±104

f2(2410) 2429±31.6 177±47.2 411±196.9 4.5±70.8 460.8±209

The background are: α11 = −0.07805, α12 = 0.03445,

α10 = −0.2295, β1 = −0.0715, γ1 = −0.04165,

β2 = −0.981, γ2 = 0.736, β3 = −0.5309, γ3 = 0.8223.



The parameters of Breit–Wigner forms for 11 states.

State Mr fr1 fr2 fr3 fr4

f2(1270) 1276.3±1.8 468.9±5.5 201.6±11.6 89.9±4.79 7.2±4.6

f2(1430) 1450.5±18.8 128.3±45.9 562.3±144 32.7±18.6 8.2±63

f ′

2(1525) 1534.7±8.6 28.5±8.5 253.9±79 89.5±12.5 51.6±155

f2(1600) 1601.5±27.9 75.5±19.6 315±50.6 388.9±28.6 127±190

f2(1710) 1719.8±6.2 78.8±43 289.5±62.6 460.3±545. 108.6±76.

f2(1810) 1760±17.6 129.5±14.8 259±32. 469.7±25.2 90.3±89.5

f2(1960) 1962.2±29.8 132.6±23.3 331±61.5 319±42.8 62.4±91.3

f2(2000) 2006±22.7 155.7±24.4 169.5±95.3 60.4±26.7 574.8±211

f2(2020) 2027±25.6 50.4±24.8 441±196.7 58±50.8 128±190

f2(2240) 2202±45.4 133.4±32.6 545±150.4 381±116 168.8±103

f2(2410) 2387±33.3 175±48.3 395±197.7 24.5±68.5 462.8±211

The background parameters are: α11 = −0.0755,

α12 = 0.0225, α10 = −0.2344, β1 = −0.0782,

γ1 = −0.05215, β2 = −0.985, γ2 = 0.7494, β3 = −0.5162,

γ3 = 0.786.



The resonance poles on sheets II, IV, VIII, and XVI for eleven states.

√
sr = Er − iΓr/2 in MeV is given.

II IV VIII XVI

State Er Γr/2 Er Γr/2 Er Γr/2 Er Γr/2

f2(1270) 1282±2.6 67.5±4.2 1257±3.5 99.6±3 1277±3 73.4±4 1264±3.4 98±3.5

f2(1430) 1425±48 98.8±54 1421±49 109±53 1426±48 98±55 1422±49 109±52

f ′

2(1525) 1534±13 24±28 1534±13 23±9 1534±13 17±29 1534±13 19.5±28

f2(1600) 1590±44 80.5±34 1592±41 74±34 1600±41 23±35 1601±40 9.4±35

f2(1710) 1710±12 87±27 1711±11 84±27 1717±9.6 42.4±27 1718±9 32±27

f2(1810) 1752±26 79±15 1752±26 84±15 1757±25 50.6±15 1758±25 36.5±15

f2(1960) 1958±43 50±19 1957±43 57±19 1962±42 3.5±19 1962±42 7.4±19

f2(2000) 2003±36 84±62 2004±35 68±64 2003±35 82±64 2002±36 95±62

f2(2020) 2025±39 52±51 2026±38 45.4±57 2026±38 42.5±57 2025±39 52±51

f2(2240) 2196±62 103±54.5 2197±62 98±55 2202±61 24±57 2201±62 45±57

f2(2410) 2385±49 71±58 2387±47 5.6±61 2387±48 18.7±60 2385±49 84±59

The masses mres and total widths Γtot of states are calculated

from the pole positions using the denominator of the resonance

part of amplitude in the form

T res =
√

sΓel/(m2
res − s − i

√
sΓtot).

mres =
√

E2
r + (Γr/2)2, Γtot = Γr.



The masses and total widths of the f2-resonances (all in MeV).
f2(1270) f2(1430) f ′

2(1525) f2(1600) f2(1710) f2(1810)

mres 1268.0±3.4 1425.5±49.2 1533.8±13.4 1592.3±44.3 1712.2±11.6 1753.8±25.6

Γtot 196.0±7.0 218.6±105.4 48.4±56.0 161.0±68.6 174.0±53.8 167.6±29.4

Sheet XVI IV, XVI II, IV II II IV

f2(1960) f2(2000) f2(2020) f2(2240) f2(2410)

mres 1958.0±42.9 2004.0±36.3 2026.0±39.0 2198.8±62.3 2386.0±48.7

Γtot 113.6±37.0 189.2±123.2 104.4±102.2 205.6±109.0 167.6±117.0

Sheet IV XVI II, XVI II XVI

It is clear that the values of these quantities, calculated from

the pole positions on various sheets, slightly differ from each

other; for the f2(2240) and f2(2410), lying in the energy region

where data are very scanty, even considerably. There are shown

only the values which match best the corresponding values Mr

and the quantities
PN

i=1 f2
ri/Mr . The sheets on which the poles,

used in calculation of mres and Γtot, lie are also indicated. In

those cases when two sheets are indicated, the pole positions

on these sheets do not differ more than 1-1.5 MeV.



Analysis of the isovector F -wave of ππ
scattering

When analyzing of the ππ-scattering data in the

IGJP C = 1+3−− sector (B. Hyams et al., NP B 64 (1973) 134)

and taking into account that the most considerable modes

of decay of the ρ3(1690) are ππ, 4π, ωπ, KK and KKπ,

we used 4-channel Breit–Wigner forms in constructing the

Jost matrix determinant

d(
√

s − s1,
√

s − s2,
√

s − s3,
√

s − s4) where s1, ..., s4 are

respectively the thresholds above indicated up to the KK.

The resonance poles and zeros in the S-matrix are

generated utilizing the Le Couteur–Newton relation

S11 = d(−
√

s − s1, · · · ,
√

s − s4)/d(
√

s − s1, · · · ,
√

s − s4) .

dres(s) =
∏

r



M2
r − s − i

4
∑

j=1

(√

s − sj

M2
r − sj

)7

Rrj f2
rj



 .



The Blatt–Weisskopf factor for a particle with J = 3 is

Rrj =
15+3(

√

M2
r − sj rrj)

2+ 2
5
(
√

M2
r − sj rrj)

4+ 1
15

(
√

M2
r − sj rrj)

6

15 + 3(
√

s − sj rrj)2 + 2
5
(
√

s − sj rrj)4 + 1
15

(
√

s − sj rrj)6

with radii of 0.927 fm in all channels.

The background part turned out to be elastic:

dB = exp






−i





√

s − 4m2
π

s





7

a1






.

a1 = −0.0138 ± 0.0011.

The analysis is performed considering one and two

resonances. The good description is obtained in both

cases: the total χ2/NDF ≈ 1.
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The parameters of the Breit–Wigner forms for two ρ3-like

states (all in MeV).

State Mr fr1 fr2 fr3 fr4

ρ3(1690) 1707.8±13.7 284.4±15.9 435.3±21.0 208.6±18.4 113.5±25

ρ3(1950) 1833.5±28.6 96.3±18.3 331.8±28.0 297.7±16.5 110.4±28.3

The poles, generated by the Breit–Wigner forms on sheets II,

IV, VIII, and XVI.
√

sr = Er − iΓr/2 in MeV is given.

II IV VIII XVI

State Er Γr/2 Er Γr/2 Er Γr/2 Er Γr/2

ρ3(1690) 1705±5.6 48±8 1707.6±4.5 15.3±13 1703.6±3.9 70±14 1700.5±4.4 87.7±13.5

ρ3(1950) 1830.4±28 55±14 1833.5±29 0.0±22.7 1833.5±27.5 11.7±15 1831±24.3 53.3±22.3

The parameters of the ρ3(1690) and its branching ratios

compared with the averaged values from the PDG tables.

Scenario mres[MeV] Γtot[MeV] Γππ/Γtot Γππ/Γ4π Γ
KK

/Γππ Γωπ/Γ4π Γ
KK

/Γtot

1 state 1703±4 179±12 0.29±0.022 0.472±0.097 0.146±0.06 0.235±0.04 0.042±0.03

2 states 1702.7±4 175±11 0.271±0.021 0.427±0.096 0.159±0.045 0.23±0.04 0.043±0.032

PDG 1688.8±2.1 160±10 0.243±0.013 0.332±0.026 0.118
+0.039

−0.032
0.23±0.05 0.013±0.0024



Discussion and conclusions

• In the IGJP C = 0+2++ sector, two analysis – without and

with the f2(2020) – were carried out. We do not obtain

f2(1640), f2(1910), f2(2150) and f2(2010), however, we see

f2(1450) and f2(1710) which are related to the

statistically-valued experimental points.

• Usually one assigns to the 1st tensor nonet the states

f2(1270) and f ′
2(1525). To the 2nd nonet, one could assign

f2(1600) and f2(1710) though for now the isodoublet

member is not discovered. If a2(1730) is the isovector of

this octet and if f2(1600) is almost its eighth component,

then, from the GM-O formula

M 2
K∗

2
=

1

4
(3M 2

f2(1600) + M 2
a2(1730)),

we would expect this isodoublet mass at about 1633 MeV.

In the relation for masses of nonet

Mf2(1600) + Mf2(1710) = 2MK∗

2
(1633),

the left-hand side is only by 1.2% bigger than the right one.



In (V.M.Karnaukhov et al., Yad.Fiz. 63, 652 (2000)), one has

observed in the mode K0
s π+π− the strange isodoublet with

yet indefinite remaining quantum numbers and with mass

1629 ± 7 MeV. This state might be the tensor isodoublet of

the second nonet.

• The states f2(1963) and f2(2207) together with the

isodoublet K∗
2(1980) could be put into the third nonet.

Then in the relation for masses of nonet

Mf2(1963) + Mf2(2207) = 2MK∗

2
(1980),

the left-hand side is only by 5.3% bigger than the right one.

If one consider f2(1963) as the eighth component of octet,

the GM-O formula gives Ma2 = 2030 MeV. This value

coincides with the one for a2-meson obtained in analysis

(A.V.Anisovich et al., PL B 452, 173 (1999); ibid., 452, 187

(1999); ibid., 517, 261 (2001).). This state is interpreted as a

second radial excitation of the 1−2++-state on the basis of

consideration of the a2 trajectory on the (n, M 2) plane

(V.V.Anisovich et al.. IJMP A 20, 6327 (2005)).



• As to the f2(2000), the presence of the f2(2020) in the

analysis with eleven resonances helps to interpret

f2(2000) as the glueball. In the case of ten resonances,

the ratio of the ππ and ηη widths is in the limits

obtained in Ref.(V.V.Anisovich et al., IJMP A 20, 6327

(2005)) for the tensor glueball on the basis of the

1/Nc-expantion rules. However, the KK width is too

large for the glueball. At practically the same

description of processes with the consideration of

eleven resonances as in the case of ten, their

parameters have varied not much, except for the

f2(2000) and f2(2410). Mass of the latter has

decreased by about 40 MeV. As to the f2(2000), its

KK width has changed significantly. Now all the

obtained ratios of the partial widths are in the limits

corresponding to the glueball.

The question of interpretation of the f2(2020) and f2(2410)

is open.



• Finally we have f2(1450) and f2(1710) which are neither qq̄

states nor glueballs. Since one predicts that masses of the

lightest qq̄g hybrids are bigger than the ones of lightest

glueballs, these states might be the 4-quark ones. Then for

the isodoublet mass of the corresponding nonet, we would

expect the value about 1570-1600 MeV. For now we do not

know experimental indications for the tensor isodoublet of

that mass. However, in the known experimental spectrum

of the K∗
2 family, there is a 500-MeV unoccupied gap from

1470 to 1970 MeV (PDG’2008), except for the above work

(V.M.Karnaukhov et al., Yad.Fiz. 63, 652 (2000)). Also, as one

can see in the PDG tables on the a2(1700) listing, the

observed isovector tensor states in the 1660-1775-MeV

interval differ in the width by about 2-3 times, i.e., possess

various properties. E.g., the broad state, observed in

p̄p → ηηπ0 (I. Uman et al. (FNAL E835), PR D 73 (2006)

052009) with mass 1702 ± 7 MeV and width 417 ± 19 MeV,

might be the isovector member of the corresponding

4-quark nonet.



Assumption of this possibility presupposes an existence of

the scalar tetraquarks at lower energies (R.L. Jaffe, PR D 15

(1977) 267, 281; N.N. Achasov et al., PL B 96 (1980) 168; Z. Phys.

C 22 (1984) 53) which are not seen in our analysis

(SBKN-PRD’2010). One can think that these states are a

part of the background in view of their very large widths.

• The analysis of the F -wave ππ scattering data (B. Hyams et

al., NP B 64 (1973) 134) indicates that, except the known

ρ3(1690) (in our analysis mres ≈1703MeV,

Γtot ≈175 MeV), there might be one more the state lying

above 1830 MeV. Since the ππ scattering data above

1890 MeV are absent, it is impossible to say something

serious on parameters of this state. However the ρ3(1950)

is not contradict to the data and even improves a little the

obtained parameters of the ρ3(1690) and its branching

ratios when comparing them with the PDG tables

(C.Amsler et al. (PDG), PL B 667 (2008) 1).


