SPACE STRUCTURE, FLUCTUATIONS AND CORRELATIONS OF ELECTROMAGNETIC CASCADES PRODUCED BY 100 MeV - 100 GeV GAMMA QUANTA IN HEAVY AMORPHOUS MEDIA

B.Słowiński¹, P.Duda² and P.Hładki²

¹Institute of Atomic Energy POLATOM, Otwock-Świerk, Poland ²Faculty of Physics, Warsaw University of Technology, Poland

XX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics Dubna, October 4-9, 2010

OUTLINE OF THE TALK

- MOTIVATION
- O ABSTRACT
- SHORT HISTORY
- **RESULTS OF MODELING**
- **SUMMARY AND CONCLUSION**

- Longitudinal profiles of electromagnetic cascades (ECs) produced in heavy amorphous media by high enough energy gamma quanta and electrons (or positrons) are the basic characteristics of the phenomenon both from cognitive and application viewpoints.
- Such are the relevant fluctuations of these profiles since the process of EC is of strongly expressed stochastic nature that is especially perceptible at not too high energies (i.e. hundredths MeV to several GeV).
- The fluctuations determine the energy resolution and accuracy of flight direction of particles initiating EMC.
- Information about fluctuations and correlations of ECs is needed for electromagnetic calorimeters under construction as PANDA (GSI), as well for radiation shielding construction and radiation material physics needs.

Abstract

- We study the average longitudinal and transverse profiles of electromagnetic cascades (ECs) created in most popular dense amorphous media (liquid xenon, PWO, CdWO4, GaAs, NaI, Pb, lead glass and BGO) by gamma quanta of energy $E_{\gamma} = 100 \text{MeV} \div 3500 \text{MeV}$ at three different cut-off energies (0.6, 1.2, 3.0 MeV). The work has been performed using the EGS4 & GEANT4 modeling codes. (For BGO we investigated the region $E_{\gamma} = 100 \text{MeV} \div 100 \text{GeV}$ at one cut-off 1.2 MeV)
- We analyzed longitudinal and transverse fluctuations in two ways. One of them is to estimate the value of standard deviation of the mean energy deposited to a given distance t from the shower start point. The other is the distribution of the shower depth, up to which an amount of energy exceeding the so-called threshold energy (TE) was deposited.
- Estimate are also the correlation parameters of energy deposition
- The results are compared with available experiment. The ultimate objective of this investigation is to obtain concise information about average profiles and fluctuations in ECs suitable for practical purposes.

Basic steps in the investigation of electromagnetic cascades:

- 1. Rossi B. Phys. Zs., 1932, vol.33, p.304 discovery of the phenomenon.
- 2. Rossi B. High-Energy Particles. Prentice-Hall, New York, 1952 - one-dimensional theory of EMC.
- 3. Longo E., Sestili J. Nucl. Instr. Meth., 1975, vol.128, p.283 computer model of EMC (neither EGS4, nor GEANT).
- 4. De Angelis A. Nucl. Instr. Meth. A., 1988, vol.271, p.455 computer model of EMC (neither EGS4, nor GEANT).
- 5. Słowiński B. Phys. Part. Nucl. 25 (2), March-April 1994 overview of experimental and theoretical description of EMC.
- 6. Modern description of EMC is needed urgently (with EGS4 and GEANT confronted with experiment).

What is the EMC in short?

$$\gamma \rightarrow e^{+} + e^{-}$$
$$e^{+} \rightarrow e^{+} + \gamma$$
$$e^{-} \rightarrow e^{-} + \gamma$$

Leading elementary processes:

- 1. Pair creation
- 2. Bremstrahlung (radiation emission)
- 3. Ioniztion
- 4. Multiple Coulomb scattering

A picture of EMC from 26 liter Xenon Bubble Chamber (LHE JINR)

Average description of EC profiles

Profiles

- longitudinal: $(-dE/dt) = A \cdot t^{\alpha} \cdot \exp(-bt)$
- lateral (or radial): $(-dE/dr) = B \cdot \exp(-\mu(t) \cdot r)$
- three-dimensional EMC picture:

 $(-d^{2}E/dt \cdot dr) = C \cdot t^{\alpha} \cdot \exp\{-[bt + \mu(t) \cdot r]\}$

and fluctuation

(as an estimation of energy resolution when a cascade totally develops inside a target matrial)

$$\frac{\sigma}{E} \propto \frac{\sqrt{t}}{\sqrt{E}},$$

t is the step of sampling in units of r.l. (C.Grupen. Particle detectors. Cambridge University Press. 1996)

$$\frac{\sigma_E}{E} = \left(\frac{a^2}{E^2} + \frac{b^2}{E} + c^2\right)^{1/2}$$

E is in GeV (for PbWO₄ as PWO; ALICE experiment)

Modeling of EC

Programs: EGS4 and GEANT4 GQ energies: $E_{\gamma} = 100, 210, 555, 875, 1625, 2375, 3125$ MeV (for BGO: 5, 10, 20, 50, 100 GeV) Cut-off energies: $E_{c.o.} = 0.6, 1.2, 3.0$ MeV Materials:

- liquid xenon
- PWO
- CdWO₄
- •GaAs
- Nal
- Pb
- lead glass
- BGO

For every set of parameters: E_{γ} , E_{co} and material we modeled 20000 events (histories).

[Radiation length]

[Radiation length]

to the approximating function:

$$(-dE/dt) = \alpha_t \left(t - \varepsilon_t\right)^{\beta_t} \exp\left(-\gamma_t t^{\delta_t}\right)$$

 $\alpha_t, \beta_t, \delta_t, \gamma_t, \varepsilon_t$ are the fit parameters depending on cutoff energy $E_{c.o.}, E_v$ and material properties.

Dependence of parameters: $\beta_t, \delta_t, \gamma_t \text{ and } \varepsilon_t$ on $E_{\gamma}, E_{c.o.}, Z/A.$

Parameter

BGO

$$\beta_t(E_{\gamma}) = a \cdot E_{\gamma}^{b} + c$$

Dependencies on E_{γ} energy for all materials (E_c =0.6MeV)

Dependencies on material parameter W=Z/A for all energies (E_c=0.6MeV)

Parameter Yt

BGO

Dependencies on E_{γ} energy for all materials (E_c =0.6MeV)

Dependencies on the material parameter W=Z/A for all energies (E_c=0.6MeV)

Parameter

 δ_t

BGO

 $\delta_t(E_{\gamma}) = \overline{a \cdot E_{\gamma}^{\ b} + c}$ $\delta(\textbf{E}_{in})$ BGO longitudinal distribution meandeposition E_{cut} [MeV] ₹ 0.6 ല.48 ല്ലൂ 9.46 7 1.2 7 2.0 0.44 7 3.0 0.42 0.4 0.38 0.36 0.34 0.32 0.3 0.28 0.26 3000 E_{in} [MeV] 500 2500 1000 2000 1500

Dependencies on $E_{\gamma}\, energy$ for all materials ($E_c = 0.6 MeV$)

E., [MeV]

210

7 555

Dependencies on the material parameter W=Z/A for all energies ($E_c = 0.6 MeV$)

Parameter

BGO

 $\varepsilon_t(E_{\gamma}) = a \cdot E_{\gamma}^{b} + c$

LONGITUDINAL PROFILES

to the approximating function:

$$(-dE/dr) = \alpha_r \exp\left(-\gamma_r r^{\delta_r}\right)$$

 $\alpha_r, \delta_r, \gamma_{r,}$ are the fit parameters depending on cut-off energy $E_{c.o.}, E_{\gamma}$ and material properties Z/A.

Dependence of parameters γ_r and δ_r on $E_{\gamma}, E_{c.o.}, Z/A.$

Parameter

 γ_r

BGO

$$\gamma_r(E_\gamma) = a \cdot E_\gamma^b + c$$

Dependencies on E_{γ} energy for all materials (E_c =0.6MeV)

Dependencies on the material parameter W=Z/A for all energies (E_c =0.6MeV)

Parameter

 δ_t

BGO

Dependencies on E_{γ} energy for all materials (E_c =0.6MeV)

Dependencies on the material parameter W=Z/A for all energies (E_c=0.6MeV)

FLUCTUATIONS

Distributions of the depth t at which a fraction A of the total EMC energy is deposited

Fitting function for longitudinal and transverse fluctuation of EMC:

$P(t_A) = \alpha t_A^{\ \beta} \exp\left(-\gamma t_A^{\ \delta}\right)$

Illustration for $E_{\gamma} = 210 \text{ MeV}$ in BGO

Distributions of the shower depth t_A at which a fixed part A of average cascade energy is released when the cascade is initiated by gamma quanta of energy $E_{\gamma} = 1625$ MeV and detected with the cutoff energies $E_{c.o.} = 0.6$, 1.2, 2.0 and 3.0 MeV.

LONGITUDINAL

Dependence of fit parameters β, γ, δ

on E_{γ} , $E_{c.o.}$ and Z/A

 $\beta(E_{\gamma}) = a \cdot E_{\gamma}^{b} + c$

 $\gamma(E_{\gamma}) = a \cdot E_{\gamma}^{b} + c$

 $\delta(E_{\gamma}) = a \cdot E_{\gamma}^{b} + c$

TRANSVERSE

Dependence of the fit parameters β,γ,δ

on E_{γ} , $E_{c.o.}$ and Z/A

 $\gamma(E_{\gamma}) = a \cdot E_{\gamma}^{b} + c$

CORRELATIONS OF LONGITUDINAL ENERGY DEPOSITION

(in liquid xenon)

Random Variable

 ΔA – part of the energy absorbed in the layer $\Delta t_i = t_i - t_{i-1}$ – layers' thickness for ΔA =0.1

Correlations

$$r_{x_i x_j} = \frac{\operatorname{cov}(X_i, X_j)}{\sigma(X_i)\sigma(X_j)}$$

 $cov(X_i, X_j)$ – covariance $\sigma(X_i), \sigma(X_j)$ - standard deviations

Correlations (A=50%, E_v =210MeV, E_c =1MeV)

Correlations (A=70%, E_v =210MeV, E_c =1MeV)

Correlations (A=90%, E_v =210MeV, E_c =1MeV)

Correlation coefficients r_{ii}

i/j	3	4	5	6	7	8	9	10
2	0,29 ± 0,03	0,10 ± 0,03	0,04 ± 0,03	0,02 ± 0,03	0,01 ± 0,03	0,00 ± 0,03	-0,02 ± 0,03	0,01 ± 0,03
3		0,32 ± 0,03	0,13 ± 0,03	0,06 ± 0,03	0,02 ± 0,03	-0,01 ± 0,03	-0,02 ± 0,03	-0,01 ± 0,03
4			0,35 ± 0,03	0,10 ± 0,03	0,02 ± 0,03	-0,02 ± 0,03	-0,02 ± 0,03	-0,02 ± 0,03
5				0,33 ± 0,03	0,07 ± 0,03	-0,02 ± 0,03	-0,04 ± 0,03	-0,02 ± 0,03
6					0,29 ± 0,03	0,02 ± 0,03	-0,06 ± 0,03	-0,03 ± 0,03
7						0,20 ± 0,03	-0,07 ± 0,03	-0,05 ± 0,03
8							0,06 ± 0,03	-0,06 ± 0,03
9								-0,08 ± 0,03

COMPARISON EGS4 & GEANT4 WITH EXPERIMENT

(material: liquid xenon)

Longitudinal fluctuation [EGS4]

Experiment

Longitudinal fluctuation [GEANT4]

Experiment

Transverse fluctuation [EGS4]

Experiment

Transverse fluctuation [GEANT4]

Experiment

Correlations

Eγ=375 MeV A=70%

Correlations

Eγ=3375 MeV A=70%

SUMMARY AND CONCLUSION

- The comprehensive analysis of the longitudinal and transverse profiles of EMC initiated in 8 various amorphous materials by qamma quanta of energy E_{γ} = 210, 555, 875, 1625, 2375 and 3125 MeV has been performed by using EGS4 and GEANT4 code at four values of cut-off energy $E_{c.o.}$ = 0.6, 1.2, 2.0 and 3.0 MeV.
- All the obtained approximating formulas in the form of simple functions reveal a quite acceptable scaling description of the electromagnetic cascade process initiated by gamma quanta of transitional energy interval 100÷3500 MeV in the most often used dense materials. They can be applied both for hard gamma detection and radiation shielding construction.
- Knowledge of correlations can be used when we want to reconstruct the electromagnetic cascade having a fragment of the EMC event only.

THANK YOU FOR YOUR ATTANTION