IMPACT PARAMETER ESTIMATION IN HADRON-NUCLEUS INTERACTIONS AT INTERMEDIATE ENERGIES

B.Słowiński¹, R.Korzeniewski², M.Kowalski³ and R.Sobczak²

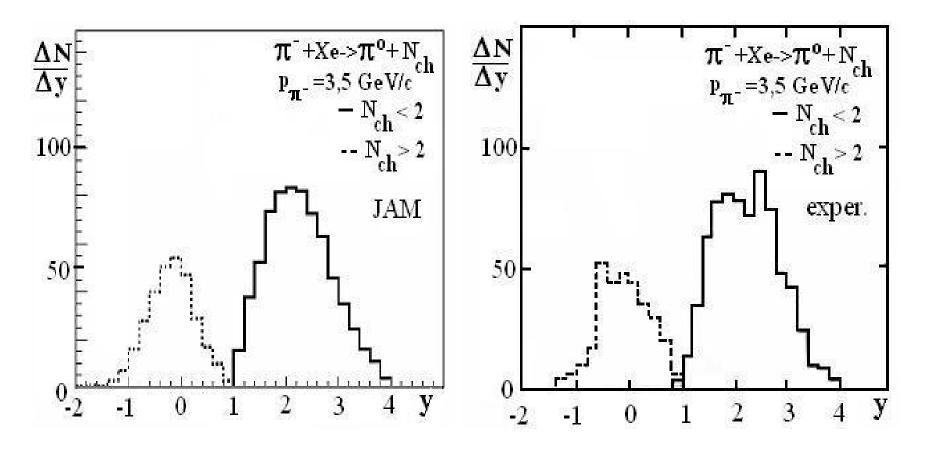
¹Institute of Atomic Energy POLATOM, Otwock-Świerk, Poland ²Faculty of Physics, Warsaw University of Technology, Warsaw, Poland ³ The Andrzej Sołtan Institute for Nuclear Studies, Otwock-Świerk, Poland

XX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics Dubna, October 4-9, 2010

OUTLINE OF THE TALK

- I. MOTIVATION
- **II. ABSTRACT**
- III. CONFRONTATION OF THE JAM CODE WITH EXPERIMENT
- **IV. RESULTS OF CALCULATION USING JAM**
 - 1. Average multiplicity vs impact parameter
 - **2. Average rapidity vs impact parameter**
 - 3. Average rapidity vs average multiplicity
 - 4. Correlation between multiplicity, rapidity and impact parameter
 - 5. Quasibinary reactions
- V. SUMMARY AND CONCLUSION

Ι. ΜΟΤΙVΑΤΙΟΝ


The impact parameter (IP) is one of the basic characteristics determining the initial geometry of the interaction of hadrons and nuclei with nuclear targets at high enough energies. It appears across the relevant theoretical formalism and, in particular, in the commonly used Glauber model. However, experimentally measured are only such quantities as multiplicity (M) of particles of definite kind, their energies, momenta and emission angles. By means of these observables one can construct the characteristics enabling categorization of experimental data like various and numerous scaling variables, longitudinal rapidity (LR), four-velocity transfer and centrality. But the classification of this kind is by its nature of statistical meaning and always the question arises about the reliability and ambiguity of this procedure.

II. A B S T R A C T

We study the correlation between the impact parameter, multiplicity and longitudinal rapidity of neutral and charged pions, protons and neutrons produced/emitted in the interactions of charged pions with xenon nuclei at momenta of 2.34, 3.5, 9 and 30 GeV/c.

The correlation is investigated using JAM modeling code. These reactions have been chosen since just in this case the corresponding experimental information is available, especially on neutral pions, registered within 4π geometry and practically without limitation on their energy, except the case at 30 GeV/c which is selected in order to observe the energy behavior of the quantity under study. Partcular attention is given to quasibinary reactions of π mesons with xenon nuclei at 2.34 and 3.5 GeV/c.

III. Confrontation of JAM code with experiment: longitudinal rapidity distribution of neutral pions from the reaction $\pi^-+Xe\rightarrow\pi^0+N_{ch}$ at 3.5GeV/c

IV. Results of calculation by using JAM code corrlations between:

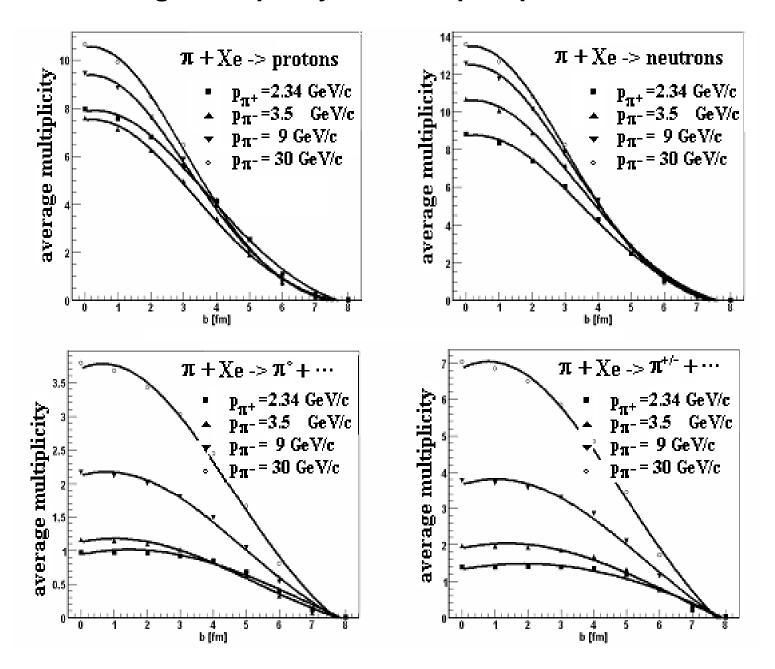
▲ multiplicity of emitted particles (pions, protons and neutrons) and the impact parameter

▲ average rapidity of these particles and the impact parameter

▲ multiplicity of emitted particles (pions, protons and netrons) and their average rapidity

for the reaction

 $\pi^{+/-}$ + Xe \rightarrow pions + protons + neutrons


at 2.34, 3.5, 9 and 30 GeV/c.

Average multiplicity (of emitted particles: pions, protons and neutrons) versus impact parameter

Reaction $\pi^{+/-}$ + Xe at 2.34, 3.5, 9 and 30 GeV/c

Simulation after JAM

Average multiplicity versus impact parameter

Approximating function for distributions of the

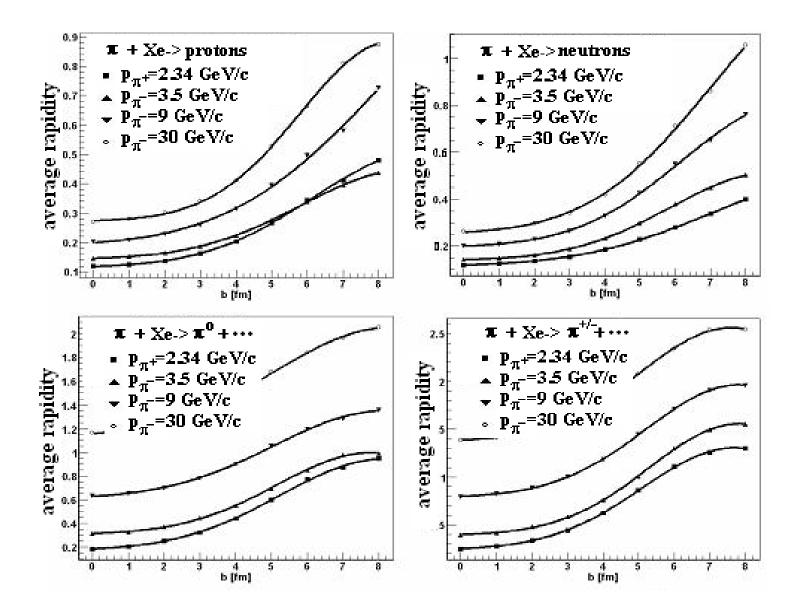
average multiplicity vs impact parameter

$$f(b) = p_0 + p_1 * \exp\left(-0.5*\left(\frac{(b-p_2)}{p_3}\right)^2\right)$$

Here p_0 , p_1 , p_2 and p_3 are parameters of distributions, b is the impact parameter. Values of parameters of the function

$$f(b) = p_0 + p_1 * \exp\left(-0.5*\left(\frac{(b-p_2)}{p_3}\right)^2\right)$$

fitting the calculated distribution of the average multiplicity vs impact parameter


particle	momentum GeV/c	P_{θ}	P ₁	<i>P</i> ₂	<i>P</i> ₃	χ^2
π ⁰	2.34	-1.1 +/- 1.1	2.1 +/- 1.1	1.5 +/- 0.4	5.6 +/- 2.1	0.0055
π^0	3.5	-0.4 +/- 0.3	1.6 +/- 0.3	1.0 +/- 0.4	4.2 +/- 0.8	0.0044
π^0	9.0	-0.7 +/- 0.4	2.8 +/- 0.4	0.8 +/- 0.4	4.1 +/- 0.7	0.0113
π^0	30.0	-0.9 +/- 0.5	4.7 +/- 0.5	0.7 +/- 0.3	3.9 +/- 0.6	0.0302
π+-	2.34	-11.9 +/- 0.5	13.4 +/- 0.5	1.9 +/- 0.4	12.5 +/- 1.0	0.0190
π+-	3.5	-1.8 +/- 1.7	3.8 +/- 1.6	1.4 +/- 0.4	5.3 +/- 1.8	0.0208
π+-	9.0	-1.9 +/- 1.3	5.7 +/- 1.3	1.0 +/- 0.4	4.5 +/- 1.0	0.0497
π+-	30.0	-2.2 +/- 1.3	9.2 +/- 1.3	0.8 +/- 0.4	4.1 +/- 0.7	0.1339
protons	2.34	-0.8 +/- 0.4	8.7 +/- 0.4	0.3 +/- 0.2	3.4 +/- 0.3	0.0528
protons	3.5	-0.5 +/- 0.2	8.0 +/- 0.3	0.23 +/- 0.21	3.1 +/- 0.2	0.0391
protons	9.0	-0.5 +/- 0.2	9.8 +/- 0.3	0.18 +/- 0.18	2.9 +/- 0.2	0.0478
protons	30.0	-0.5 +/- 0.2	11.0 +/- 0.3	0.18 +/- 0.19	2.9 +/- 0.2	0.0722
neutrons	2.34	-0.7 +/- 0.3	9.5 +/- 0.4	0.27 +/- 0.22	3.2 +/- 0.2	0.0591
neutrons	3.5	-0.8 +/- 0.3	11.4 +/- 0.4	0.23 +/- 0.21	3.2 +/- 0.2	0.0777
neutrons	9.0	-0.6 +/- 0.3	13.1 +/- 0.4	0.17 +/- 0.19	3.0 +/- 0.2	0.0872
neutrons	30.0	-0.6 +/- 0.3	14.0 +/- 0.4	0.19 +/- 0.19	2.9 +/- 0.2	0.1139

Average rapidity (of emitted particles: pions, protons and neutrons) *versus* impact parameter

Reaction $\pi^{+/-}$ + Xe at 2.34, 3.5, 9 and 30 GeV/c

Simulation after JAM

Average rapidity versus impact parameter

Approximating function for distributions of the

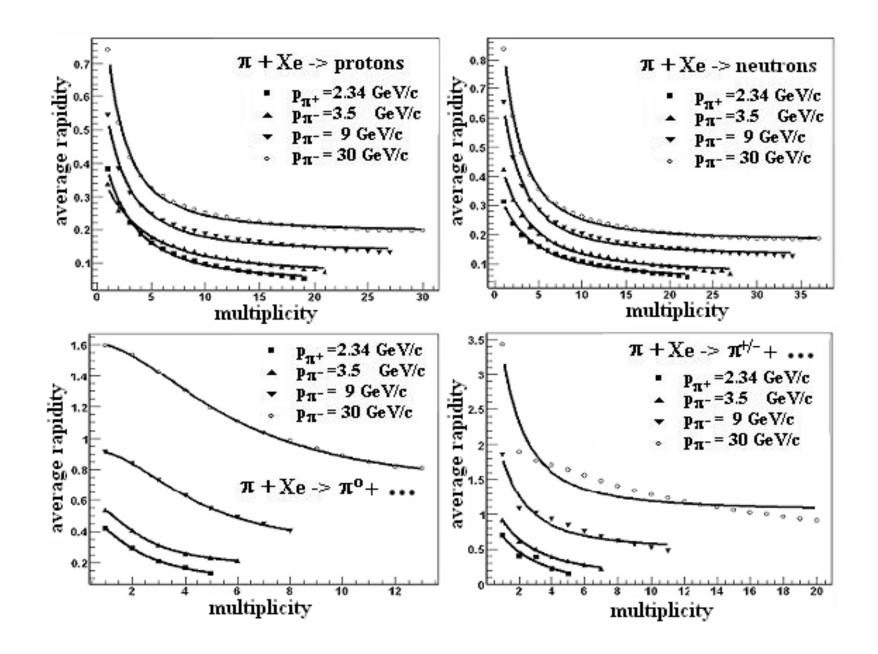
average rapidity vs impact parameter

$$f(b) = p_0 + p_1 * \exp\left(-0.5*\left(\frac{(b-p_2)}{p_3}\right)^2\right)$$

Here p_0 , p_1 , p_2 and p_3 are parameters of distributions, b is the impact parameter.

Valeus of parameters of the gaussian fuction

Valeus of parameters of the gaussian fuction $f(b) = p_0 + p_1 * \exp\left(-0.5*\left(\frac{(b-p_2)}{p_3}\right)^2\right)$ fitting the distribution of the average rapidity *vs* impact parameter


particle	momentum GeV/c	p_0	p_1	p_2	p_3	χ^2
π^0	2,34	$0,17~\pm~0,01$	$0,77 \pm 0,02$	$8{,}15\ \pm\ 0{,}14$	$^{2,89} \pm 0,12$	0,0001
π^0	3,5	$0,31~\pm~0,01$	$0,69 \pm 0,01$	$7,8~\pm~0,1$	$2{,}6~\pm~0{,}1$	0,0001
π^0	9,0	$0,61~\pm~0,01$	$0,74~\pm~0,02$	$8{,}13\ \pm\ 0{,}19$	3,05 \pm 0,17	0,0002
π^0	30,0	$1,13 \pm 0,02$	$0,93 \pm 0,03$	$8,\!29 \pm 0,\!19$	$3,\!18 \pm 0,\!17$	0,0002
π ^{+/-}	2,34	$0,\!238\pm0,\!008$	$1,07 \pm 0,01$	7,69 \pm 0,06	2,60 \pm 0,06	0,0001
π ^{+/-}	3,5	$0,\!389\ \pm\ 0,\!007$	$1,17 \pm 0,01$	7,82 \pm 0,06	2,53 \pm 0,05	0,0001
π ^{+/-}	9,0	$0,\!786\ \pm\ 0,\!005$	$1,18 \pm 0,01$	7,81 \pm 0,04	2,61 \pm 0,03	0,00004
π ^{+/-}	30,0	$1,\!373\ \pm\ 0,\!007$	$1,19~\pm~0,01$	7,59 \pm 0,04	$^{2,54}~\pm~0,04$	0,0001
protons	2,34	$0{,}114\ \pm\ 0{,}003$	$0,39 \pm 0,01$	$9,\!18 \pm 0,\!24$	$3,\!03 \pm 0,\!15$	0,00002
protons	3,5	$0{,}142\ \pm\ 0{,}001$	$0,\!306\ \pm\ 0,\!002$	$8{,}82~\pm~0{,}04$	$2,\!98~\pm~0,\!02$	0,000001
protons	9,0	$0,18 \pm 0,01$	$0,85 \pm 0,18$	11,9 \pm 1,3	$4{,}1~\pm~0{,}5$	0,0002
protons	30,0	$0,\!271\ \pm\ 0,\!005$	$0,61~\pm~0,01$	$8{,}35~\pm~0{,}12$	$^{2,53}~\pm~0,09$	0,00005
neutrons	2,34	$0{,}113\ \pm\ 0{,}002$	$0,37 \pm 0,01$	10,7 \pm 0,2	$^{3,69}\pm0,11$	0,000003
neutrons	3,5	$0{,}139\ \pm\ 0{,}001$	$0,\!374\ \pm\ 0,\!004$	$8{,}70\ \pm\ 0{,}08$	$^{2,83} \pm 0.05$	0,000004
neutrons	9,0	$0,\!194\ \pm\ 0,\!007$	$0,61 \pm 0,03$	$9,2 \pm 0,3$	$3,\!02 \pm 0,\!19$	0,0001
neutrons	30,0	$0,25~\pm~0,01$	$1,0 \pm 0,1$	$10,3 \pm 0,7$	$3,4 \pm 0,3$	0,0002

Average rapidity (of emitted particles: pions, protons and neutrons) *versus* average multiplicity

Reaction $\pi^{+/-}$ + Xe at 2.34, 3.5, 9 and 30 GeV/c

Simulation after JAM

Average rapidity versus multiplicity of the reaction π + Xe

Approximation function of the dependence of the average rapidity of particles on their multiplicity:

$$f(N) = p_0 + p_1 \frac{1}{\pi} \left[\frac{p_2}{(N - p_3)^2 + p_2^2} \right]$$

Here p_0 , p_1 , p_2 and p_3 are free parameters and *N* is the multiplicity of particles

Values of parameters of approximating function $f(N) = p_0 + p_1 \frac{1}{\pi} \left[\frac{p_2}{(N - p_3)^2 + p_2^2} \right]$

particle	$\begin{array}{c} { m momentum} \\ [GeV/c] \end{array}$	p_0	p_1	p_2	p_3	χ^2
π^0	2,34	$0,\!07 \pm 2,\!03$	$3,3 \pm 104,5$	$2,2 \pm 28,7$	$-0,3 \pm 60,3$	0,000008
π^0	3,5	$0,169 \pm 0,009$	$2,6 \pm 0,4$	$2,0\pm~0,2$	$0{,}3~\pm~0{,}3$	0,00001
π^0	9,0	$0,\!27~\pm~0,\!02$	$8,1 \pm 0,8$	$3,9\pm~0,3$	$0,5 \pm 0,2$	0,000023
π^0	30,0	$0,\!66 \pm 0,\!02$	$16,3 \pm 1,2$	$5,4\pm0,3$	$0{,}3~\pm~0{,}2$	0,0002
π ^{+/-}	2,34	$0,\!05 \pm 3,\!84$	$(0,04 \pm 3) \cdot 10^{6}$	-53 ± 775	$11~\pm~145$	0,003
$\pi^{+/-}$	3,5	$0,\!20\pm0,\!06$	$(1,5 \pm 4,3) \cdot 10^5$	-56 ± 19	12 ± 3	0,001
$\pi^{+/-}$	9,0	$0,\!56 \pm 0,\!09$	$(1,5 \pm 3,9) \cdot 10^8$	$-80\pm~30$	13 ± 5	0,03
$\pi^{+/-}$	30,0	$1,\!11\pm0,\!09$	$(0,5 \pm 1,4) \cdot 10^{10}$	-103 ± 46	16 ± 7	0,26
protons	2,34	$0,065 \pm 0,005$	$(4 \pm 5) \cdot 10^6$	-117 \pm 13	$20{,}7~\pm~1{,}8$	0,0006
protons	3,5	$0,\!085\ \pm\ 0,\!005$	$(2,1 \pm 2,1) \cdot 10^{6}$	-150 \pm 19	$26,6 \pm 2,9$	0,0006
protons	9,0	$0,150 \pm 0,004$	$(7,5 \pm 9,5) \cdot 10^7$	-117 \pm 13	$19,1~\pm~1,8$	0,002
protons	30,0	$0,211\ \pm\ 0,004$	$(6,5 \pm 5,2) \cdot 10^7$	-101 ± 9	$-16,7 \pm 1,3$	0,003
neutrons	2,34	$0,067 \pm 0,005$	$(2,1 \pm 2,2) \cdot 10^6$	-156 ± 19	28 ± 3	0,0006
neutrons	3,5	$0,089~\pm~0,005$	$(2,4 \pm 2,2) \cdot 10^7$	-167 ± 19	28 ± 3	0,002
neutrons	9,0	$0,148 \pm 0,005$	$(1,1 \pm 1,2) \cdot 10^8$	-133 ± 13	22 ± 2	0,004
neutrons	30,0	$0,201\ \pm\ 0,004$	$(1,9 \pm 1,7) \cdot 10^9$	-140 ± 11	21,3 \pm 1,4	0,004

CORRELATION

between multiplicity, rapidity and impact parameter for the reaction

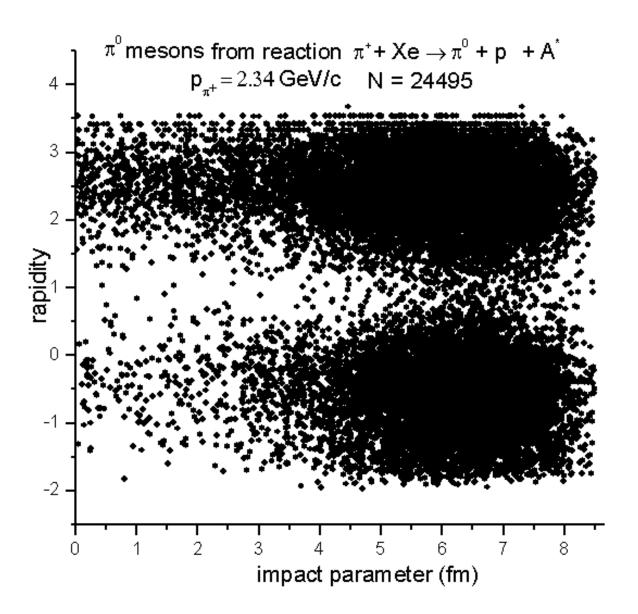
 $\Pi^{+/-}$ + Xe \rightarrow protons + neutrons + pions at 2.34, 3.5, 9 and 30 GeV/c calculated by using the JAM code

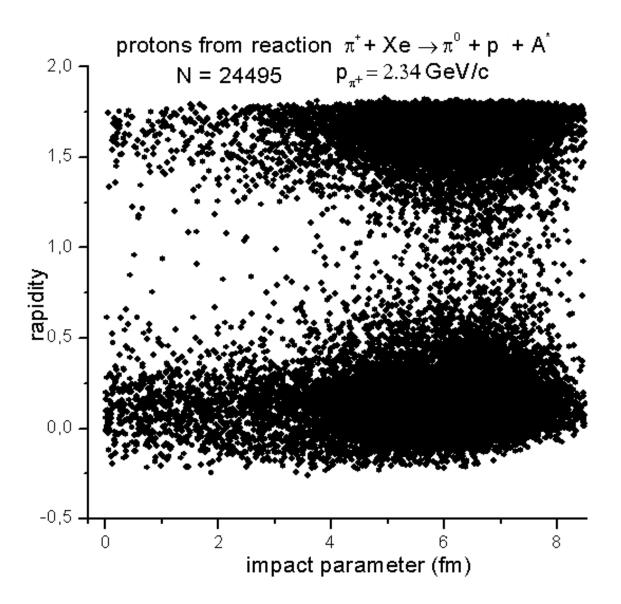
Values of coefficients of the correlation between multiplicity, rapidity and impact parameter for the reaction π +Xe calculated by using the JAM code

		coeficients of correlation				
$\frac{\text{momentum}}{[GeV/c]}$	secondary particles	multiplicity vs impact parameter	rapidity vs impact parameter	rapidity vs multiplicity		
2,34	π^0	$-0,083 \pm 0,009$	$0,215 \pm 0,009$	$-0,098 \pm 0,009$		
2,34	$\pi^{+/-}$	$-0,08 \pm 0,01$	$0,28 \pm 0,01$	$-0, 15 \pm 0, 01$		
2,34	protons	$-0,539 \pm 0,006$	$0, 13 \pm 0, 01$	$-0,171 \pm 0,009$		
3, 5	π^0	$-0,124 \pm 0,009$	$0, 19 \pm 0, 01$	$-0, 11 \pm 0, 01$		
3, 5	$\pi^{+/-}$	$-0,14\pm0,01$	$0,25 \pm 0,01$	$-0, 18 \pm 0, 01$		
3, 5	protons	$-0,500\pm0,007$	$0, 10 \pm 0, 01$	$-0,139 \pm 0,008$		
9,0	π^0	$-0,200\pm0,009$	$0, 18 \pm 0, 01$	$-0,134 \pm 0,009$		
9,0	$\pi^{+/-}$	$-0,236 \pm 0,009$	$0,210 \pm 0,009$	$-0,20\pm 0,01$		
9,0	protons	$-0,511 \pm 0,006$	$0, 10 \pm 0, 01$	$-0,134 \pm 0,009$		
30,0	π^0	$-0,275\pm0,009$	$0, 17 \pm 0, 01$	$-0,161 \pm 0,009$		
30,0	$\pi^{+/-}$	$-0,313\pm0,009$	$0, 18 \pm 0, 01$	$-0,20\pm 0,01$		
30, 0	protons	$-0,517 \pm 0,006$	$0,09 \pm 0,01$	$-0,126 \pm 0,009$		

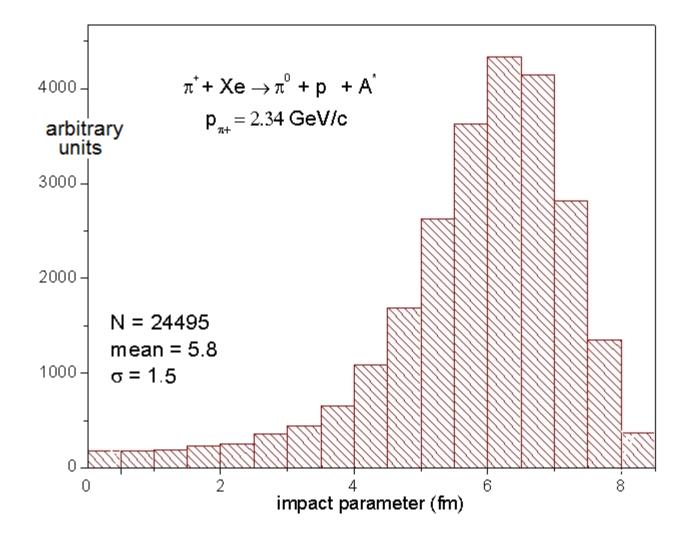
Quasibinary reactions (preliminary results)

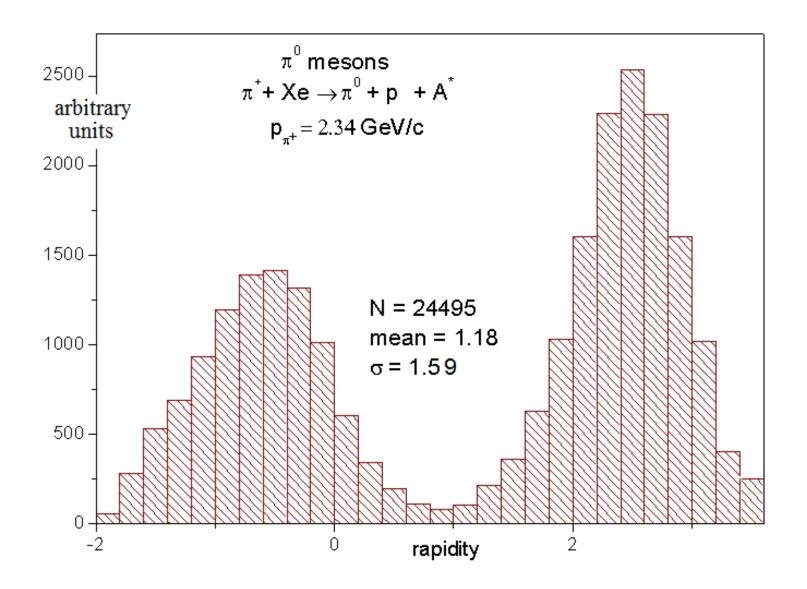
• $\pi^+ + Xe \rightarrow \pi^0 + p + A'$ at 2,34 GeV/c


• π^- + Xe $\rightarrow \pi^0$ + n + A'

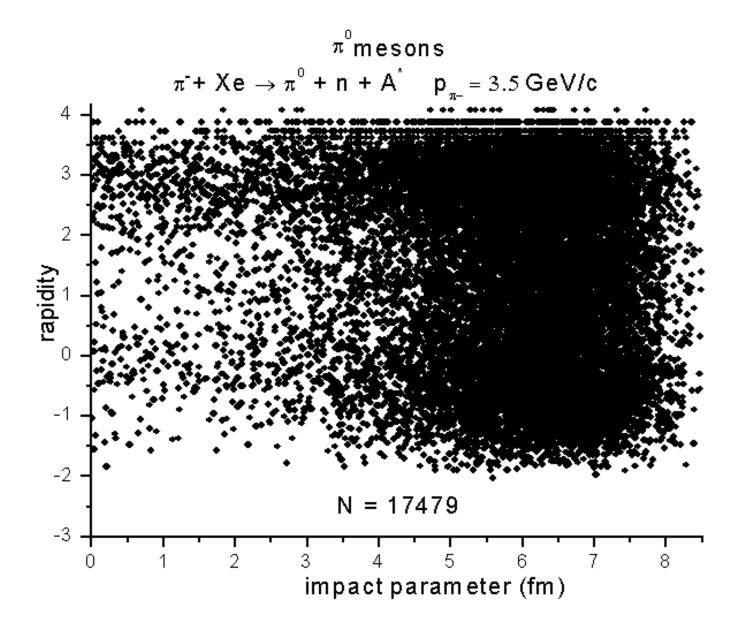

 π^{0} + n + ($\pi^{+/-}$, p) + A' at 3,5 GeV/c

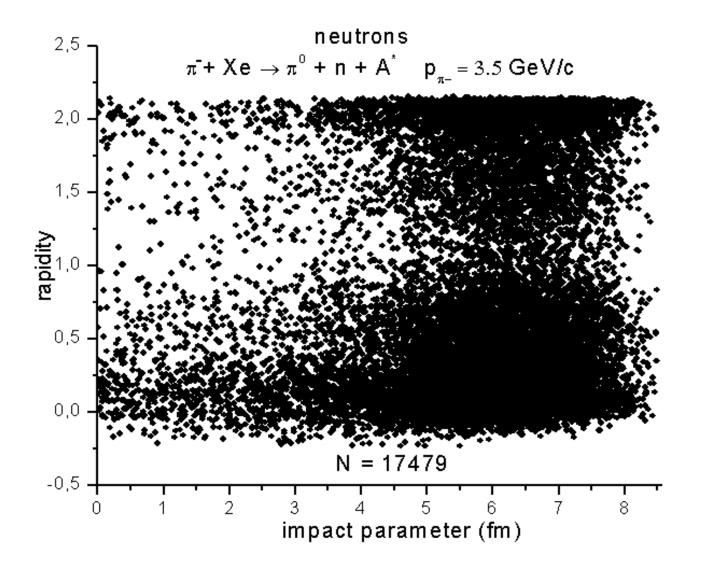
(π^{+/-}, p): E_π≲5 MeV, E_p≲10 MeV


π^+ + Xe $\rightarrow \pi^0$ + p + A'

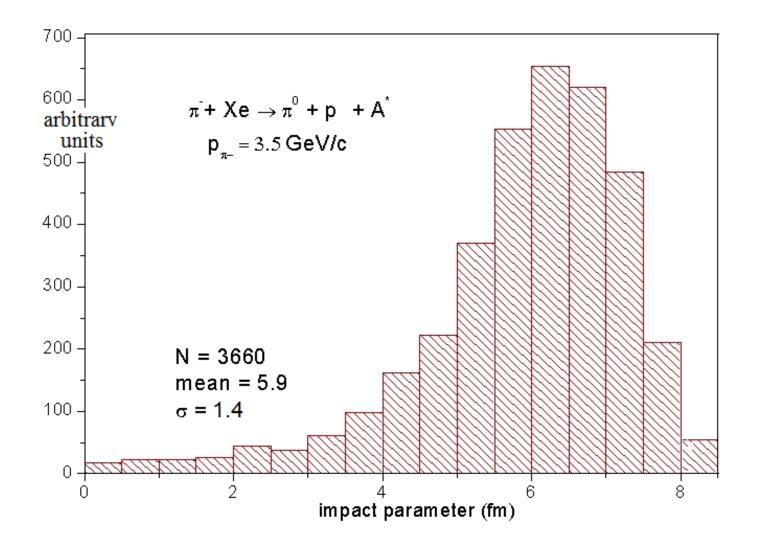

at 2,34 GeV/c

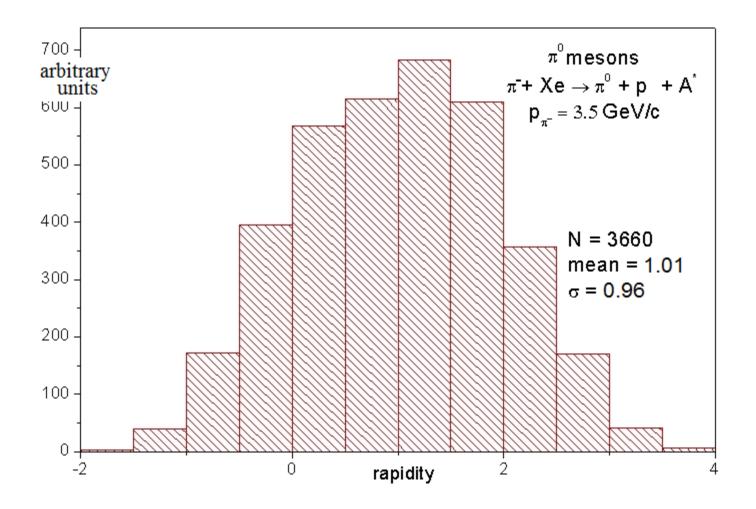
Boundary distributions

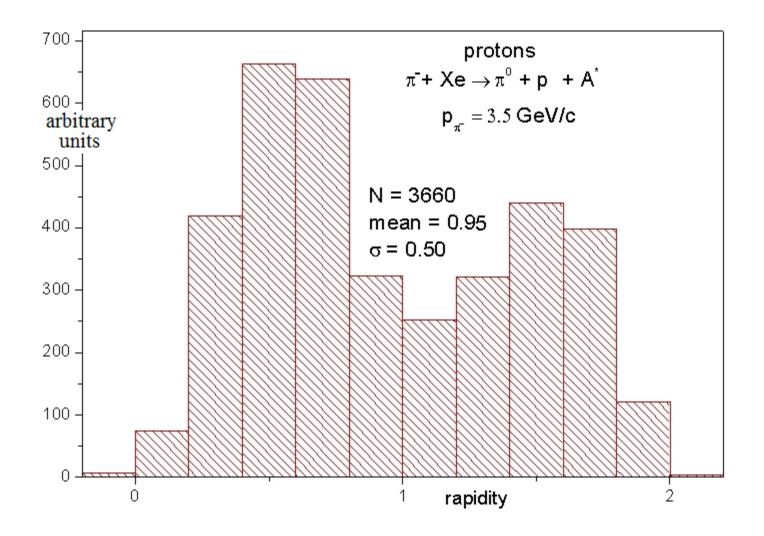


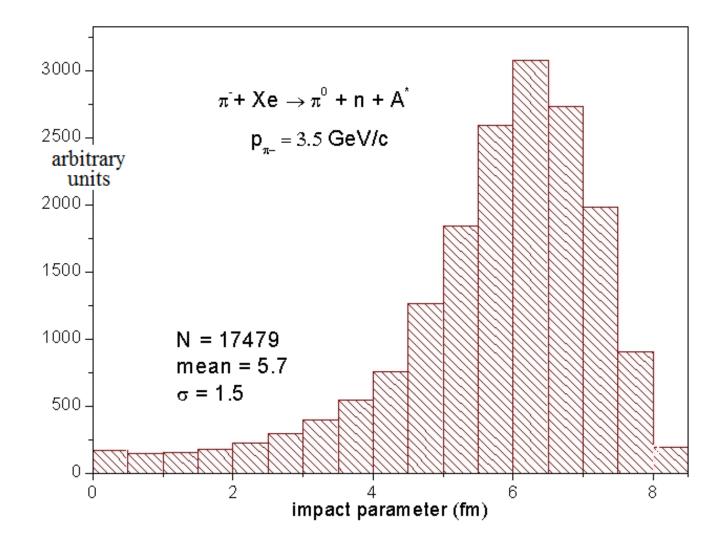


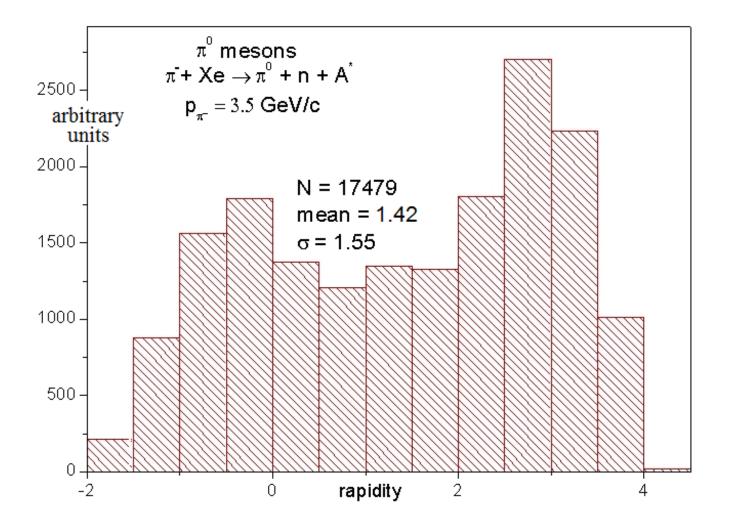
$\pi^- + Xe \rightarrow \pi^0 + n + A'$

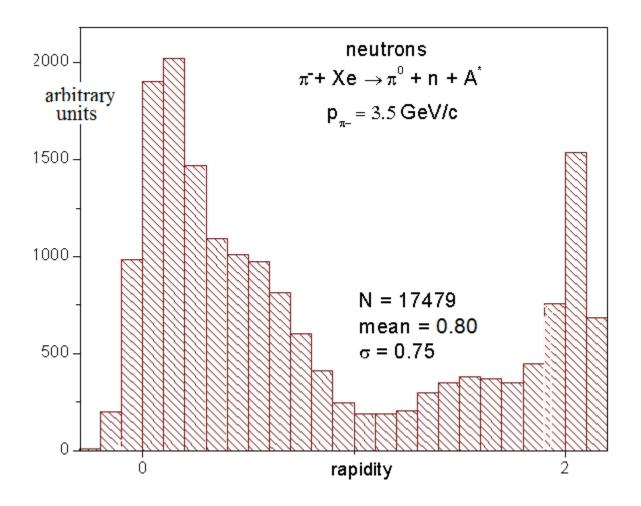

π^{0} + n + ($\pi^{+/-}$, p) + A'

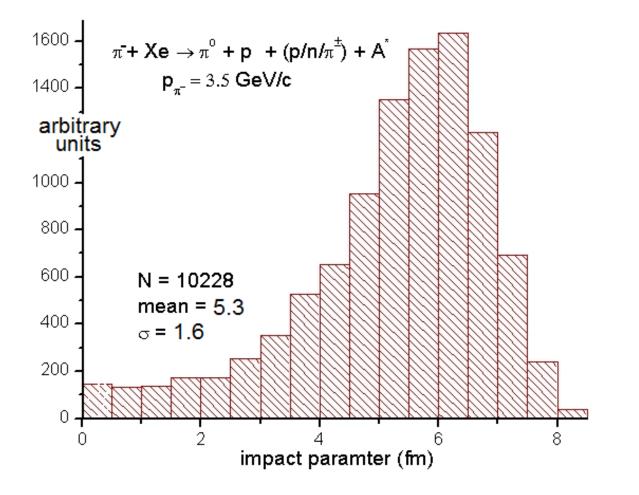

at 3,5 GeV/c

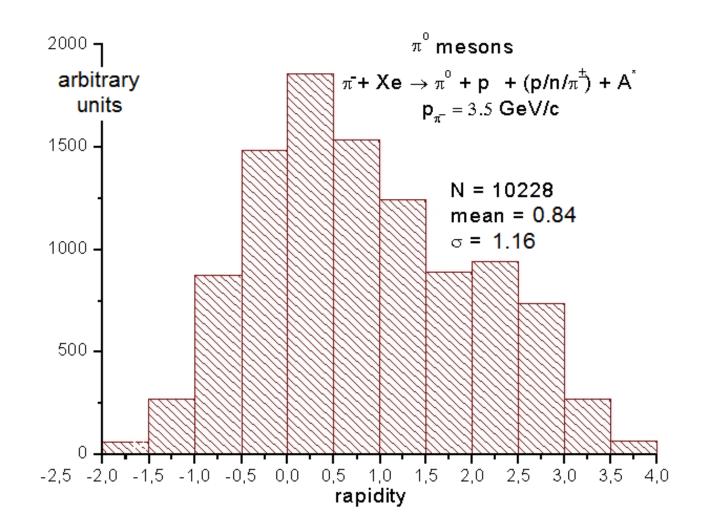


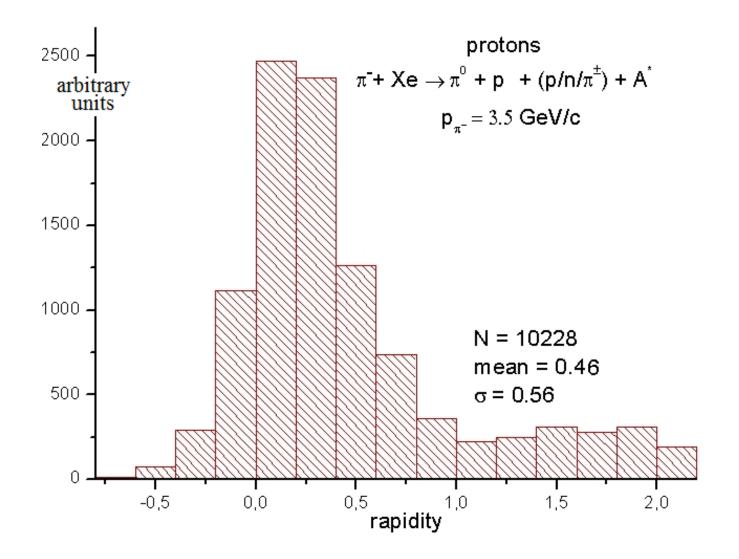


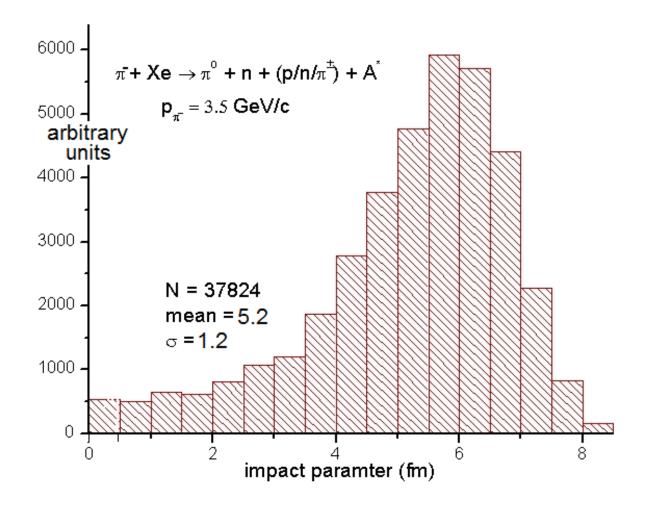

Boundary distributions

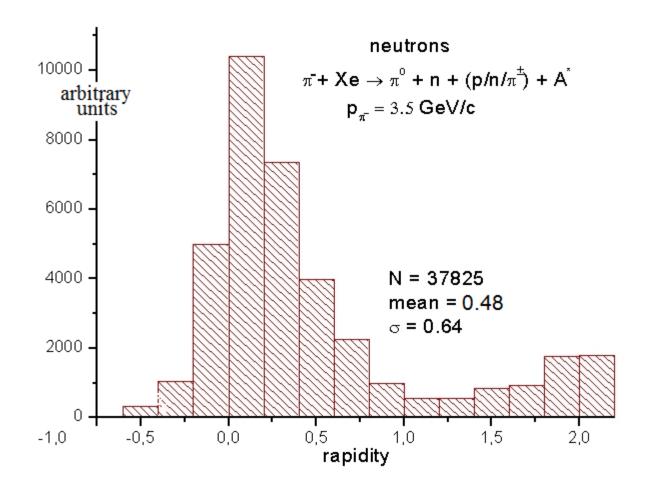












π^- + Xe at 3.5 GeV/c

- $\rightarrow \pi^0$ + p + A'
- impact parameter: $b = 5.9 \text{ fm } (5.8 \text{ fm})^{*/}$ $\sigma_{b} = 1.4 \text{ fm } (1.5 \text{ fm})^{*/}$

 $\rightarrow \pi^{0} + n + A'$ impact parameter: b = 5.7 fm $\sigma_{b} = 1.4 \text{ fm}$ $\rightarrow \pi^{0}$ + p+ (p/n/ $\pi^{+/}$) +A'

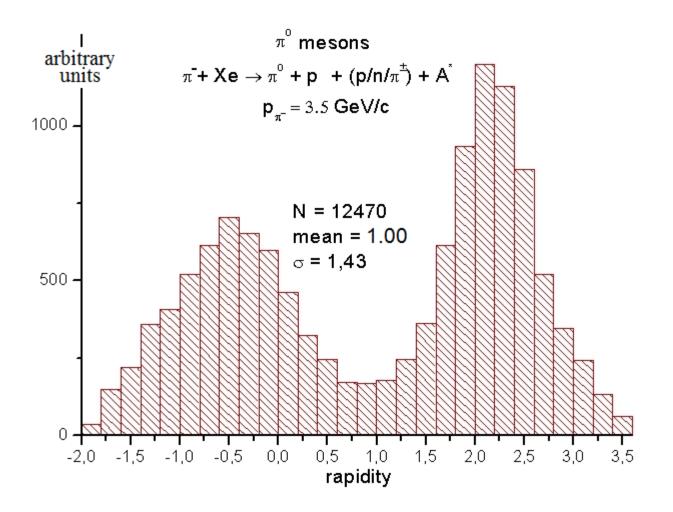
b = 5.3 fm

$$\sigma_{\rm b}$$
 = 1.6 fm

 $\rightarrow \pi^{0} + n + (p/n/\pi^{+/}) + A'$ impact parameter: b = 5.2 fm $\sigma_{b} = 1.2 \text{ fm}$

$$f(r_0) = \sigma_N \int_{-\sqrt{R^2 - r_0^2}}^{\sqrt{R^2 - r_0^2}} \rho\left(\sqrt{r_0^2 + x^2}\right) \exp\left\{-\left[\sigma_N \int_{-\sqrt{R^2 - r_0^2}}^{x} \rho(\sqrt{r_0^2 + x^2}) dx + \sum_i f_i(r_{0_i})\right]\right\} dx$$

*/ π^{+} + Xe $\rightarrow \pi^{0}$ + p + A' at 2.34 GeV/c


V. Summary and conclusion

- 1. Comprehensive analysis of the correlation between multiplicity, rapidity and impact parameter has been done using JAM code by the example of the reaction $\pi^{+/-}$ + Xe \rightarrow pions + protons + neutrons at 2.34, 3.5, 9 and 30 GeV/c.
- 2. The obtained results show that there exists the possibility to derive information about the impact paramter on the basis of the measured multiplicity of different kinds of emitted particles and their rapidity even at moderate energies.
- 3. The above mentioned task may be solved more succesfully if other scaling variables are used, too.

THANK YOU

FOR

ATTENTION

