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Some Recollections
We will now prove the fundamental theorem:
any operator O may be expressed as a sum of
products of creation and annihilation operators ...
S. Weinberg
Quantum Theory of Fields, Vol. I, 1995, p. 175.

In accordance with the motto each of ten generators of the Poincaré group Π may be
expressed as a sum of products of creation and annihilation operators a†(n) and a(n)
(n = 1, 2, ...) for free particles, e.g., bosons and/or fermions.

In the framework of such a corpuscular picture Hamiltonian of a system of interacting
mesons and nucleons can be written as

H =
∞∑

C=0

∞∑
A=0

HCA,

HCA =

∫∑
HCA(1

′, 2′, ..., n′
C ; 1,2,...,nA)a†(1′)a†(2′)...a†(n′

C)a(nA)...a(2)a(1),

C(A) – particle-creation (annihilation) number for operator substructure HCA and

HCA(1
′, 2′, ...,C; 1,2, ...,A) = δ(p⃗′

1 + p⃗′
2 + ...+ p⃗′

C − p⃗1 − p⃗2 − ...− p⃗A)

× hCA(p
′
1µ

′
1ξ

′
1, p

′
2µ

′
2ξ

′
2, ..., p

′
Cµ

′
Cξ

′
C ; p1µ1ξ1, p2µ2ξ2, ..., pAµAξA),

c-number coefficients hCA do not contain! delta function.
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“To free ourselves from any dependence on pre-existing field theories” (after
S.Weinberg), boost operators N⃗ = (N1,N2,N3)

N⃗ =
∞∑

C=0

∞∑
A=0

N⃗CA,

N⃗CA =

∫∑
N⃗CA(1

′, 2′, ..., n′
C ; 1, 2, ..., nA)a†(1′)a†(2′)...a†(n′

C)a(nA)...a(2)a(1)

one of our purposes is to find some links between coefficients HCA and N⃗CA,
compatible with commutations

[Pi ,Pj ] = 0, [Ji , Jj ] = iεijk Jk , [Ji ,Pj ] = iεijk Pk ,

[P⃗,H] = 0, [J⃗,H] = 0, [Ji ,Nj ] = iεijk Nk , [Pi ,Nj ] = iδijH,

[H, N⃗] = i P⃗, [Ni ,Nj ] = −iεijk Jk ,

(i , j , k = 1, 2, 3),

P⃗ = (P1,P2,P3) and J⃗ = (J1, J2, J3) linear and angular momentum operators.
For instant form of relativistic dynamics after Dirac only Hamiltonian and boost
operators carry interactions,

H = HF + HI

N⃗ = N⃗F + N⃗I

while P⃗ = P⃗F and J⃗ = J⃗F .
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In turn,

HCA =

∫
HCA(x⃗)dx⃗ so H =

∫
H(x⃗)dx⃗

with density

H(x⃗) =
∞∑

C=0

∞∑
A=0

HCA(x⃗).

For instance, in case with C = A = 2,

H22(1′, 2′; 1, 2) = δ(p⃗′
1 + p⃗′

2 − p⃗1 − p⃗2)h(1′2′; 12)

H22(x⃗) =
1

(2π)3

∫∑
exp[−i(p⃗′

1 + p⃗′
2 − p⃗1 − p⃗2)x⃗ ]h(1′2′; 12)a† (1′) a† (2′) a (2) a (1) .

As usually a(n) = a(p⃗n, µn, ξn). Further, transformation properties with respect to Π in
case of massive particle with spin j :

UF (Λ, b)a†(p, µ)U−1
F (Λ, b) = eiΛpbD(j)

µ′µ(W (Λ, p))a†(Λp, µ′),

∀Λ ∈ L+ and arbitrary spacetime shifts b = (b0, b⃗),
with D-function whose argument is Wigner rotation W (Λ, p), L+ the homogeneous
(proper) orthochronous Lorentz group, (Λ, b) → UF (Λ, b) unitary irreducible
representation of Π in Hilbert space, e.g. hardronic states, for operators
a(p, µ) = a(p⃗, µ)

√
p0 that meet covariant commutation relations

[a(p′, µ′), a†(p, µ)]± = p0δ(p⃗ − p⃗′)δµ′µ,

[a(p′, µ′), a(p, µ)]± = [a†(p′, µ′), a†(p, µ)]± = 0.

Here p0 =
√

p⃗2 + m2 is fourth component of 4-momentum p = (p0, p⃗).
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Often one has to deal with field models where in Dirac (D) picture

UF (Λ, b)HI(x)U−1
F (Λ, b) = HI(Λx + b), ∀x = (t , x⃗).

For interaction density

H22(x) =
1

(2π)3

∫∑
exp[i(p′

1 + p′
2 − p1 − p2)x ]× h(1′2′; 12)a† (1′) a† (2′) a (2) a (1)

it means

D(j′1)
η′

1µ
′
1
(W (Λ, p′

1))D
(j′2)
η′

2µ
′
2
(W (Λ, p′

2))D
(j1)∗
η1µ1(W (Λ, p1))D(j2)∗

η2µ2(W (Λ, p2))

× h(p′
1µ

′
1, p

′
2µ

′
2; p1µ1, p2µ2) = h(Λp′

1η
′
1,Λp′

2η
′
2; Λp1η1,Λp2η2).

Of course, summations over all dummy labels are implied.
After these preliminaries we will show how one can build up interaction parts in
Hamiltonian and boosts.
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Recall that angular momentum J⃗ = J⃗F = J⃗π + J⃗ferm with

J⃗π =
i
2

∫
dk⃗ k⃗ ×

(
∂a†(k⃗)

∂k⃗
a(k⃗)− a†(k⃗)

∂a(k⃗)

∂k⃗

)
and J⃗ferm = L⃗ferm + S⃗ferm, where

L⃗ferm =
i
2

∫∑
dp⃗ p⃗ ×

(
∂b†(p⃗µ)
∂p⃗

b(p⃗µ)− b†(p⃗µ)
∂b(p⃗µ)
∂p⃗

+
∂d†(p⃗µ)
∂p⃗

d(p⃗µ)− d†(p⃗µ)
∂d(p⃗µ)
∂p⃗

)
,

S⃗ferm =
1
2

∫∑
dp⃗χ†(µ′)σ⃗χ(µ)(b†(p⃗µ′)b(p⃗µ)− d†(p⃗µ′)d(p⃗µ)),

boosts N⃗F = N⃗π + N⃗ferm with

N⃗π =
i
2

∫
dk⃗ ωk⃗ (

∂a†(k⃗)

∂k⃗
a(k⃗)− a†(k⃗)

∂a(k⃗)

∂k⃗
)

and N⃗ferm = N⃗orb
ferm + N⃗spin

ferm, where

N⃗orb
ferm =

i
2

∫∑
dp⃗ Ep⃗

(
∂b†(p⃗µ)
∂p⃗

b(p⃗µ)− b†(p⃗µ)
∂b(p⃗µ)
∂p⃗

+
∂d†(p⃗µ)
∂p⃗

d(p⃗µ)− d†(p⃗µ)
∂d(p⃗µ)
∂p⃗

)
,

N⃗spin
ferm = −1

2

∫∑
dp⃗ p⃗ × χ†(µ)σ⃗χ(µ)

Ep⃗ + m

(
b†(p⃗µ)b(p⃗µ) + d†(p⃗µ)d(p⃗µ)

)
,

ωk⃗ =

√
k⃗2 + m2

π (Ep⃗ =
√

p⃗2 + m2) pion (nucleon) energy and χ(µ) Pauli spinor.
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Clothed Particle Representation (CPR) of Hamiltonian and Other
Generators of the Poincaré Group

At this point, one can address the so–called Belinfante ansatz

N⃗bel = −
∫

x⃗H(x⃗)dx⃗

which is helpful for a simultaneous blockdiagonalization of Hamiltonian and boost
[2,3], viz., both of them, being dependent on primary operators {α} (such as a†(a),
b†(b) and d†(d) for mesons and nucleons) in bare particle representation (BPR), are
expressed through corresponding operators {αc} for particle creation and
annihilation in CPR via unitary clothing transformations (UCTs) W (α) = W (αc)

α = W (αc)αcW †(αc)

A key point of clothing procedure in question is to remove so-called bad terms from
Hamiltonian

H ≡ H(α) = HF (α) + HI(α) = W (αc)H(αc)W †(αc) ≡ K (αc),

By definition, such terms prevent physical vacuum |Ω⟩ (H lowest eigenstate) and
one-clothed-particle states |n⟩c = a†

c(n)|Ω⟩ to be H eigenvectors for all n included.
Bad terms occur every time when any normally ordered product

a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1)

of class [C.A] embodies, at least, one substructure ∈ [k .0] (k = 1, 2...) or/and [k .1]
(k = 2, 3, ...).
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Respectively, let us write for boson–fermion system

HI(α) = V (α) + Vren(α)

with primary (trial) interaction

V (α) = Vbad + Vgood

”good” (e.g., ∈ [k .2]) as antithesis of ”bad” while Vren(α) ∼ [1.1] + [0.2] + [2.0] ”mass
renormalization counterterms”. Latter are important to ensure relativistic invariance
(RI) in Dirac sense.
In its turn, V =

∑
b

Vb comprises separate boson–fermion couplings Vb. In order to

compare our calculations with those by Bonn group (Machleidt, Holinde, Elster) we
have employed

V (α) = Vs + Vps + Vv

Vs = gs

∫
dx⃗ ψ̄(x⃗)ψ(x⃗)φs(x⃗) Vps = igps

∫
dx⃗ ψ̄(x⃗)γ5ψ(x⃗)φps(x⃗)

Vv = V (1)
v + V (2)

v , V (1)
v =

∫
dx⃗Hsc(x⃗), V (2)

v =

∫
dx⃗Hnonsc(x⃗)

Hsc(x⃗) = gvψ̄(x⃗)γµψ(x⃗)φµ
v (x⃗) +

fv
4m

ψ̄(x⃗)σµνψ(x⃗)φµν
v (x⃗)

Hnonsc(x⃗) =
g2

v

2m2
v
ψ̄(x⃗)γ0ψ(x⃗)ψ̄(x⃗)γ0ψ(x⃗) +

f 2
v

4m2 ψ̄(x⃗)σ0iψ(x⃗)ψ̄(x⃗)σ0iψ(x⃗)

φµν
v (x⃗) = ∂µφν

v (x⃗)− ∂νφµ
v (x⃗) tensor of vector field in Schrödinger (S) picture.
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Here we encounter scalar Hsc and nonscalar Hnonsc contributions to interaction
densities of ρNN and ωNN couplings

UF (Λ, a)Hsc(x)U−1
F (Λ, a) = Hsc(Λx + a)

UF (Λ, a)Hnonsc(x)U−1
F (Λ, a) ̸= Hnonsc(Λx + a)

Therefore, in order to apply our approach to local field models with derivatives and/or
spin j ≥ 1 and also to their nonlocal extensions in framework of such a corpuscular
picture we have developed clothing procedure [2,3] removing from Vbad only its scalar
part Vsc , if any. Clothing itself (cf. our talks at ISHEPP’02 and ISHEPP’04), as
illustration for ρNN and ωNN couplings, is prompted by

H(α) = K (αc) = W (αc)[HF (αc) + Vv(αc) + Vren(αc)]W †(αc)

or putting W = expR with R = −R† so

K (αc) = HF (αc) + V (1)
v (αc) + [R,HF ] + V (2)

v (αc)

+ [R,V (1)
v ] +

1
2
[R, [R,HF ]] + [R,V (2)

v ] +
1
2
[R, [R,V (1)

v ] + ...

and requiring [R,HF ] = −V (1)
v (*) for the operator R of interest to get

H = K (αc) = KF + KI

with a new free part KF = HF (αc) ∼ a†
cac and interaction

KI =
1
2
[R,V (1)

v ] + V (2)
v +

1
3
[R, [R,V (1)

v ]] + ...
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After a simple algebra we find

1
2

[
R,V (1)

v

]
(NN → NN) = Kv(NN → NN) + Kcont(NN → NN)

Operator Kcont(NN → NN) may be associated with a contact interaction since it does
not contain any propagators (details see in Refs. [6,7]). It has turned out that this
operator cancels completely non–scalar operator V (2). In our opinion, such a
cancellation, first discussed here, is a pleasant feature of the CPR.
Moreover, using property Vsc(x) to be Lorentz scalar one can show that Lie algebra
of Π is satisfied with

N⃗I = N⃗Bel + D⃗ ≡
∫

x⃗V (1)
v (x⃗)dx⃗ + D⃗

and get recursive formulae for finding contributions D⃗(n) to D⃗ =
∞∑

n=2
D⃗(n), label (n) –

n’th order in coupling constants. It differs from expansion by Krueger and Gloeckle
(1999).
In parallel, we have

N⃗(α) = B⃗(αc) = W (αc){N⃗F (α) + N⃗I(α) + N⃗ren(α)}W †(αc)

with
N⃗I = −

∫
x⃗Vv(x⃗)dx⃗ = −

∫
x⃗{V (1)

v (x⃗) + V (2)
v (x⃗)}dx⃗ = N⃗(1)

I + N⃗(2)
I
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As before (see Refs. [2,3]) we find

[R, N⃗F ] = −N⃗(1)
I ,

once operator meets condition (*) so boost generators in CPR acquire structure
similar to K (αc)

B⃗(αc) = B⃗F + B⃗I .

Here B⃗F = N⃗F (αc) the boost operator for noninteracting clothed particles (in our case
fermions and vector mesons) and B⃗I includes the contributions induced by
interactions between them

B⃗I = +
1
2
[R, N⃗(1)

I ] +
1
3
[R, [R, N⃗(1)

I ]] + ...
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Relativistic Interactions in Meson–Nucleon Systems
Interaction operators

KI ∼ a†
cb†

c acbc(πN → πN) + b†
c b†

c bcbc(NN → NN) + d†
c d†

c dcdc(N̄N̄ → N̄N̄)

+ b†
c b†

c b†
c bcbcbc(NNN → NNN) + ... + [a†

ca†
cbcdc + H.c.](NN̄ ↔ 2π) + ...

+ [a†
cb†

c b†
c bcbc + H.c.](NN ↔ πNN) + ...

Pion-nucleon interaction operator

K (πN → πN) =

∫
dp⃗1dp⃗2dk⃗1dk⃗2 VπN(k⃗2, p⃗2; k⃗1, p⃗1)a†

c(k⃗2)b†
c (p⃗2)ac(k⃗1)bc(p⃗1),

VπN(k⃗2, p⃗2; k⃗1, p⃗1) =
g2

2(2π)3

m√
ωk⃗1

ωk⃗2
Ep⃗1

Ep⃗2

δ(p⃗1 + k⃗1 − p⃗2 − k⃗2)

ū(p⃗2)

{
1
2

[
1

p̂1 + k̂1 + m
+

1
p̂2 + k̂2 + m

]
+

1
2

[
1

p̂1 − k̂2 + m
+

1
p̂2 − k̂1 + m

]}
u(p⃗1)

πN quasipotential in momentum space is:

ṼπN(k⃗2, p⃗2; k⃗1, p⃗1) =
⟨

a†
c(k⃗2)b†

c (p⃗2)Ω|K (πN → πN)|a†
c(k⃗1)b†

c (p⃗1)Ω
⟩
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Figure 1: Different contributions to πN quasipotential.
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Graphs in Fig. 1 are topologically equivalent to well-known time-ordered Feynman
diagrams. However, in Schrödinger picture used here, where all events are related to
one and the same instant t = 0, such an analogy could be misleading: line directions
in Fig. 1 are given with the sole scope to discriminate between nucleon and
antinucleon states.
Energy conservation is not assumed in constructing this and other quasipotentials.
Indeed, coefficients in front of a†

cb†
c acbc generally do not fulfill on-energy-shell

condition
Ep⃗1

+ ωk⃗1
= Ep⃗2

+ ωk⃗2
,

In this connection, ”left” four-vector s1 is not necessarily equal to ”right” Mandelstam
vector s2 = p2 + k2.
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Nucleon-nucleon interaction operator

After normal ordering of fermion operators we derive NN → NN interaction operator:

KNN =

∫
dp⃗1dp⃗2dp⃗ ′

1dp⃗ ′
2VNN(p⃗ ′

1 , p⃗
′
2 ; p⃗1, p⃗2)b†

c (p⃗
′
1)b

†
c (p⃗

′
2)bc(p⃗1)bc(p⃗2),

VNN(p⃗ ′
1 , p⃗

′
2 ; p⃗1, p⃗2) = −1

2
g2

(2π)3

m2√
Ep⃗1

Ep⃗2
Ep⃗ ′

1
Ep⃗ ′

2

δ(p⃗ ′
1 + p⃗ ′

2 − p⃗1 − p⃗2)

×ū(p⃗ ′
1)γ5u(p⃗1)

1
(p1 − p′

1)
2 − µ2 ū(p⃗ ′

2)γ5u(p⃗2),

Corresponding relativistic and properly symmetrized NN interaction

ṼNN(p⃗ ′
1 , p⃗

′
2 ; p⃗1, p⃗2) =

⟨
b†

c (p⃗
′
1)b

†
c (p⃗

′
2)Ω | KNN | b†

c (p⃗1)b†
c (p⃗2)Ω

⟩
or through covariant (Feynman-like) “propagators”,
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ṼNN(p⃗ ′
1 , p⃗

′
2 ; p⃗1, p⃗2) = −1

2
g2

(2π)3

m2

2
√

Ep⃗1
Ep⃗2

Ep⃗ ′
1
Ep⃗ ′

2

δ(p⃗ ′
1 + p⃗ ′

2 − p⃗1 − p⃗2)

× ū(p⃗ ′
1)γ5u(p⃗1)

1
2

{
1

(p1 − p′
1)

2 − µ2

+
1

(p2 − p′
2)

2 − µ2

}
ū(p⃗ ′

2)γ5u(p⃗2)− (1 ↔ 2). (*)

Formula (*) determines NN part of OBE interaction derived earlier via Okubo
transformation method by Korchin, Shebeko [ Phys. At. Nucl. 56 (1993) 1663 ] (cf.
Fuda, Zhang. Phys. Rev. C 51 (1995) 23 ) taking into account pion exchange and
heavy-meson exchanges.
Distinctive feature of potential (*) is the presence of covariant (Feynman-like)
“propagator”,

1
2

{
1

(p1 − p′
1)

2 − µ2 +
1

(p2 − p′
2)

2 − µ2

}
.

On the energy shell for NN scattering, that is

Ei ≡ Ep⃗1
+ Ep⃗2

= Ep⃗ ′
1
+ Ep⃗ ′

2
≡ Ef ,

this expression is converted into genuine Feynman propagator.
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NN ↔ πNN transition operators

K (NN → πNN) =

∫
dp⃗1dp⃗2dp⃗ ′

1dp⃗ ′
2dk⃗VπNN(p⃗ ′

1 , p⃗
′
2 , k⃗ ; p⃗1, p⃗2)

a†
c(k⃗)b

†
c (p⃗

′
1)b

†
c (p⃗

′
2)bc(p⃗1)bc(p⃗2)

VπNN

(
p⃗ ′

1 , p⃗
′
2 , k⃗ ; p⃗1, p⃗2

)
= VπNN (Feynman-like) + VπNN (off-energy-shell) ,

where

VπNN(Feynman − like) = −i
g3

(2π)9/2

m2δ(p⃗1 + p⃗2 − p⃗ ′
1 − p⃗ ′

2 − k⃗)√
2ωk⃗ Ep⃗1

Ep⃗2
Ep⃗ ′

1
Ep⃗ ′

2

× ū(p⃗ ′
2)γ5u(p⃗2)

(p2 − p′
2)

2 − µ2 ū(p⃗ ′
1)

[
1

p̂′
1 + k̂ + m

+
1

p̂1 − k̂ + m

]
u(p⃗1),

Then we introduce quasipotential

ṼπNN(p⃗ ′
1 , p⃗

′
2 , k⃗ ; p⃗1, p⃗2) =

⟨
a†

c(k⃗)b
†
c (p⃗1

′)b†
c (p⃗

′
2)Ω|K (NN → πNN)|b†

c (p⃗1)b†
c (p⃗2)Ω

⟩
and draw respective graphs
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Figure 2: Illustration of the ”retarded” pion production mechanisms on the NN pair in the
g3−order.
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Figure 3: Illustration of the ”advanced” pion production mechanisms on the NN pair in the
g3−order.
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Three–Nucleon Forces

Normal ordering of fermion operators in [R, [R, [R,V ]]] leads to NNN → NNN
interaction operator (antiparticle degrees of freedom are neglected),

K (3N → 3N) =

∫
dp⃗1dp⃗2dp⃗3dp⃗ ′

1dp⃗ ′
2dp⃗ ′

3V3N(p⃗ ′
1 , p⃗

′
2 , p⃗

′
3 ; p⃗1, p⃗2, p⃗3)

× b†
c (p⃗

′
1)b

†
c (p⃗

′
2)b

†
c (p⃗

′
3)bc(p⃗1)bc(p⃗2)bc(p⃗3),

V3N(p⃗ ′
1 , p⃗

′
2 , p⃗

′
3 ; p⃗1, p⃗2, p⃗3)

= −1
8

g4m4

(2π)6

δ(p⃗ ′
1 + p⃗ ′

2 + p⃗ ′
3 − p⃗1 − p⃗2 − p⃗3)√

Ep⃗1
Ep⃗2

Ep⃗3
Ep⃗ ′

1
E p⃗ ′

2
Ep⃗ ′

3

Dp⃗ ′
1 ,⃗p

′
2 ,⃗p ′

3
p⃗1 ,⃗p2 ,⃗p3

1
Eq⃗

ū(p⃗ ′
1)γ5u(p⃗1)

× ū(p⃗ ′
2)

m − q̂
2m

u(p⃗2)ū(p⃗ ′
3)γ5u(p⃗3),D

p⃗ ′
1 ,⃗p

′
2 ,⃗p

′
3

p⃗1 ,⃗p2 ,⃗p3
=

Ep⃗ ′
2
− Eq⃗ + Ep⃗1

− Ep⃗ ′
1

[(p1 − p ′
1)

2 − µ2] [(p ′
2 − q)2 − µ2]

×
[

3
(p3 − p ′

3)
2 − µ2 +

1
(p2 − q)2 − µ2

]
+

Ep⃗2
− Eq⃗ + Ep⃗ ′

3
− Ep⃗3

[(p3 − p ′
3)

2 − µ2] [(p2 − q)2 − µ2]

×
[

3
(p1 − p ′

1)
2 − µ2 +

1
(p ′

2 − q)2 − µ2

]
, q⃗ = p⃗ ′

1 + p⃗ ′
2 − p⃗1 = p⃗2 + p⃗3 − p⃗ ′

3

In static limit for nucleons the quasipotential appears as a correction of nucleon-recoil
order.
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S Operator, Equivalence Theorem for S Matrix and Its Application to
Elastic NN Scattering

By definition, with H = HF (α) + HI(α)

S = lim
t2→+∞

lim
t1→−∞

eıHF t2 e−ıH(t2−t1)e−ıHF t1

Let us introduce S operator for decomposition H = K (αc) = KF (αc) + KI(αc),

Scloth = lim
t2→+∞

lim
t1→−∞

eıKF t2 e−ıK (t2−t1)e−ıKF t1

One can show that if WD (t)=exp (iKF t)Wexp (−iKF t) meets condition

lim
t→±∞

WD (t) = 1 or limt→±∞RD (t) = 0
then

Scloth = lim
t2→+∞

lim
t1→−∞

eıKF (αc )t2 e−ıH(αc )(t2−t1)e−ıKF (αc )t1

Matrix elements of S = S(α) between bare states α†...Ω0 with HFΩ0 = 0,⟨
α†...Ω0

∣∣∣S(α)
∣∣∣α†...Ω0

⟩
and matrix elements of Scloth = S(αc) between clothed states α†

c ...Ω with KFΩ = 0,⟨
α†

c ...Ω
∣∣∣S(αc)

∣∣∣α†
c ...Ω

⟩
are equal to each other since αc-algebra with physical vacuum Ω is isomorphic to α
-algebra with bare vacuum Ω0, i.e.,

Sfi ≡ ⟨f | S | i⟩ = ⟨f ; c | Scloth | i ; c⟩
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Application to Elastic NN Scattering

This result (ISHEPP’02, FB’03) has allowed us to reduce extremely complicated
problem of describing NN scattering in QFT to solution of integral equation

⟨1′, 2′|TNN(E + i0)|1, 2⟩ = ⟨1′, 2′|KNN |1, 2⟩

+ ⟨1′, 2′|KNN(E + i0 − KF )
−1TNN(E + i0)|1, 2⟩

|12⟩ = b†
c b†

c |Ω⟩ any clothed two–nucleon state, once we will confine ourselves to
approximation KI = KNN or equation for R− matrix⟨

1′2′∣∣ R̄(E) |12⟩ =
⟨
1′2′∣∣ K̄NN |12⟩+

∫
34

∑⟨
1′2′∣∣ K̄NN |34⟩ ⟨34| R̄(E) |12⟩

E − E3 − E4

with R̄(E) = R(E)/2 (K̄NN = KNN/2), symbol
∫
34

∑
implies the p.v . integration.

After angular–momentum decomposition in c.m.s

R̄JST
L′ L (p

′, p) = V̄ JST
L′ L (p

′, p) +
1
2

∑
L′′

P

∞∫
0

q2 dq
Ep − Eq

V̄ JST
L′ L′′(p

′, q)R̄JST
L′′L(q, p)

R̄JST
L′L (p′, p) ≡ R̄JST

L′L (p′, p; 2Ep)
In our case such a decomposition means transition to matrix elements between
states
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|pJ(LS)MJ⟩ =
∑( 1

2µ1
1
2µ2 |SMS

)
(LmLSMS |JMJ )

×
∫

dΩp⃗YLmL(
ˆ⃗p) b†

c (p⃗µ1)b†
c (−p⃗µ2) |Ω⟩

A careful exploration shows that our equation for T -matrix with cutoff functions

Fb(p′, p) =
[

Λ2
b − m2

b

Λ2
b − (p′ − p)2

]nb

≡ Fb[(p′ − p)2]

has much common with equation by Bonn group in JST -representation (in particular,
for their Potential B). Nevertheless, one needs to keep in mind some distinctions,
viz.,Potential B by Bonn group can be obtained from UCT quasipotentials with help of
following transformations

I for boson propagators

[(p′ − p)2 − m2
b]

−1 −→ −[p⃗ ′ − p⃗)2 + m2
b]

−1

I for cutoff functions[
Λ2

b − m2
b

Λ2
b − (p′ − p)2

]nb

−→
[

Λ2
b − m2

b

Λ2
b + (p⃗ ′ − p⃗)2

]nb

I omitting off–energy–shell correction in tensor–tensor term

fv
2

4m2 (Ep′ − Ep)
2ū(p⃗ ′)[γ0γν − g0ν ]u(p⃗)ū(−p⃗ ′)[γ0γν − g0ν ]u(−p⃗) −→ 0
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Table 1: The best–fit parameters for the two models. All masses are in MeV , and nb = 2 except
for nρ = nω = 4.

Meson Potential B UCT

π g2
π/4π 14.4 14.574
Λπ 1700 2200
mπ 138.03 138.03

η g2
η/4π 3 2.1
Λη 1500 1200
mη 548.8 548.8

ρ g2
ρ/4π 0.9 1.3
Λρ 1850 1450

fρ/gρ 6.1 5.953
mρ 769 769

ω g2
ω/4π 24.5 25.325
Λω 1850 2143.8
mω 782.6 782.6

δ g2
δ/4π 2.488 2.923
Λδ 2000 2092.2
mδ 983 983

σ, T = 0, T = 1 g2
σ/4π 18.3773, 8.9437 16.081, 10.089
Λσ 2000, 1900 2012.4, 2200
mσ 720, 550 693.66, 562.07
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Figure 4: Neutron-proton phase parameters plotted versus nucleon kinetic energy in lab.
system. Solid curves calculated for Potential B. Dashed (dotted) - for UCT potential with
Potential B (UCT ) parameters from Table 1. The rhombs show original OBEP results.
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Figure 5: Half–off–shell R–matrices at laboratory energy equal to 150 MeV(p0=265 MeV). Other
notations as in Fig.1.
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Figure 6: Off–shell potentials with the momentum p0 fixed as in Fig. 2. Other notations in Fig. 1.
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Clothing Procedure in the Theory of EM Interactions with Nuclei.
Deuteron Properties

The Deuteron Equation

Now, we consider a K (αc) eigenstate from the NN sector

| ψNN⟩ =
∑
µ1µ2

∫
dp⃗1dp⃗2ψNN(p⃗1µ1, p⃗2µ2)b†(p⃗1µ1)b†(p⃗2µ2) | Ω⟩

In the approximation KI = K (2)
I , the eigenvalue equation has the form

[KF + KNN ] |ψNN⟩ = E |ψNN⟩

In turn the deuteron state at rest can be written as the superposition∣∣∣ψM
d

⟩
=
∑
l=0,2

∞∫
0

dq q2 |q(l1)1M⟩ψd
l (q)

with coefficients ψd
l (q) = ⟨q(l1)1M| ψNN⟩ that satisfy the equations

ψd
l (p) =

1
Md − 2Ep⃗

∑
l′

∞∫
0

dq q2 V̄ J=1,S=1,T=0
l l′ (p, q)ψd

l′(q)

where Md = 2m − εd deuteron mass, εd deuteron binding energy.
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Figure 7: Deuteron wave functions ψd
0 (q) = u(q) and ψd

2 (q) = w(q). Solid curves for Bonn
Potential B. Dashed (dotted) - for UCT potential with Potential B (UCT ) parameters from Table 1.

In case of the UCT potential after parameters fitting we have for the deuteron binding
energy εd = 2.224 MeV and for the D-state probability PD = 5.494%
vs Bonn values εd = 2.223 MeV and PD = 4.986%).
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Deuteron Properties

In its most general form, the relativistic deuteron electromagnetic current can be
written as

⟨P′M ′|Jµ(0)|PM⟩ = −
{

G1(Q2)[ξ∗M′(P′) · ξM(P)](P′ + P)µ

+ G2(Q2)
[
ξM(P)[ξ∗M′(P′) · q]− ξ∗M′(P′)[ξM(P) · q]

]
−G3(Q2)

1
2m2

d
[ξ∗M′(P′) · q][ξM(P) · q](P′ + P)µ

}
ξM(P)(ξM′(P′)) - polarizations of incoming (outgoing) deuteron.

GC(Q
2) = G1(Q2) +

2
3
ηGQ(Q

2), GM(Q2) = G2(Q2),

GQ(Q
2) = G1(Q2)−GM(Q2)+(1+η)G3(Q2), q = P′−P, Q2 = −q2, η =

Q2

4m2
d

At Q2 = 0, form factors GC , GM and GQ give charge, magnetic and quadrupole
moments of deuteron:

QC(0) = 1, QM(0) =
md

mp
µd , GQ(0) = m2

d Qd
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For example, in case of deuteron magnetic moment we have

µd ∼ lim
η→0

⟨P′M ′ = 1|Jx(0)|PM = 0⟩
√
η
√

1 + η
= lim

η→0

⟨P′M ′ = 1|Jx(0)|P = (md , 0⃗)M = 0⟩
√
η
√

1 + η

Deuteron state in moving frame can be built up as

|P′M ′⟩ = e−iβ⃗(P′)B⃗ |⃗0M ′⟩

where boost operator
B⃗ = B⃗F + B⃗I

contains interaction part and

β⃗ = βn⃗, n⃗ =
v⃗
v
, tanhβ = v , v⃗ =

P⃗ ′

md

Choosing P⃗ ′ = (0, 0, q) we have

µd ∼ ⟨0⃗M ′ = 1|
(
Bz

F + Bz
I
)

Jx(0)|⃗0M = 0⟩
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Current Operator

For brevity, we omit any addressing to the Fock–Weyl criterion to satisfy the gauge
independence principle, e.g., for reaction amplitude

T (γd → pn) = ϵµ⟨pn; out |Jµ(0)|d⟩

and local analog of Siegert theorem based on transformation property of current
density operator Jµ(x) with respect to Poincaré group (Shebeko Sov. J. Nucl. Phys.
90). For this illustration,

Jµ(0) = Jµ
N (0) + Jµ

M(0)

where, for instance, Jµ
N (0) = ψ̄(0)

1 + τ3

2
γµψ(0) and Jµ

M(0) = [ϕ⃗× ∂µϕ⃗]3. In CPR

J(0) = Jeff (0) ≡ WJc(0)W † = Jc(0) + [R, Jc(0)] +
1
2
[R, [R, Jc(0)]] + ...

Jc(0) initial current in which “bare” operators are replaced by clothed ones. This
decomposition involves one–body, two–body and more complicated effective currents
if one uses terminology customary in the theory of meson exchange currents (MEC).
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Following clothing procedure current operator Jeff (0) can be written as

Jµ
eff (0) = Jµ

N (0) + Jµ
MEC(0) + · · · =

∫
dp⃗ ′dp⃗ Fµ

N(p⃗
′, p⃗)b†

c (p⃗
′)bc(p⃗)

+

∫
dp⃗ ′

1dp⃗ ′
2dp⃗1dp⃗2 Fµ

MEC(p⃗
′
1 , p⃗

′
2 ; p⃗1, p⃗2)b†

c (p⃗
′
1)b

†
c (p⃗

′
2)bc(p⃗1)bc(p⃗2) + · · ·

First term is contained nucleon form factors

⟨q⃗ ′, p[n]|Jµ
N (0)|q⃗, p[n]⟩ =

e
(2π)3 ū(q⃗ ′)

{
F p[n]

1 [(q′ − q)2]γµ

+ıσµν(q′ − q)νF p[n]
2 [(q′ − q)2]

}
u(q⃗),

second – so–called interaction (or meson exchange) currents
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Conclusions and Prospects
I Starting from a total Hamiltonian for interacting meson and nucleon fields, we

come to Hamiltonian and boost generator in CPR whose interaction parts
consist of new relativistic interactions responsible for physical (not virtual)
processes, particularly, in the system of bosons (π−, η−, ρ−, ω−, δ− and
σ−mesons) and fermions (nucleons and antinucleons). The corresponding
quasipotentials (these essentially nonlocal objects) for binary processes
NN → NN, N̄N → N̄N, etc. are Hermitian and energy independent. It makes
them attractive for various applications in nuclear physics. They embody the
off–shell effects in a natural way without addressing to any off–shell
extrapolations of the S−matrix for the NN scattering.

I Using unitary equivalence of CPR to BPR, we have seen how in approximation
KI = K (2)

I NN scattering problem in QFT can be reduced to three –dimensional
LS–type equation for the T−matrix in momentum space. The equation kernel is
given by clothed two-nucleon interaction of class [2.2]. Such a conversion
becomes possible owing to property of K (2)

I to leave two–nucleon sector and its
separate subsectors to be invariant.

I Special attention has been paid to the elimination of auxiliary field components.
We encounter such a necessity for interacting vector and fermion fields when in
accordance with the canonical formalism the interaction Hamiltonian density
embodies not only a scalar contribution but nonscalar terms too. It has proved
(at least, for primary ρN and ωN couplings) that the UCT method allows us to
remove such noncovariant terms directly in the Hamiltonian.
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I Being concerned with constructing two–nucleon states from H and their
angular–momentum decomposition we have not used the so–called separable
ansatz, where every such state is a direct product of corresponding one–
nucleon (particle) states. The clothed two–nucleon partial waves have been built
up as common eigenstates of the field total angular–momentum generator and
its polarization (fermionic) part expressed through the clothed
creation/destruction operators and their derivatives in momentum space.

I We have not tried to attain a global treatment of modern precision data. But a
fair agreement with the earlier analysis by Bonn group and reasonable treatment
of deuteron properties makes sure that our approach may be useful for a more
advanced analysis. In the context, to have a more convincing argumentation one
needs to do at least the following:
1) consider triple commutators [R, [R, [R,Vb]]] to extract
two–boson–two–nucleon interaction operators of the same class [2.2] in fourth
order in coupling constants.
2) extend our approach for describing the NN scattering above pion production
threshold.
As a whole, the persistent clouds of virtual particles are no longer explicitly
contained in CPR, and their influence is included in properties of clothed
particles (these quasiparticles of UCT method). In addition, we would like to
stress that problem of the mass and vertex renormalizations is intimately
interwoven with constructing the interactions between clothed nucleons.
Renormalized quantities are calculated step by step in course of clothing
procedure unlike some approaches, where they are introduced by ”hands”.
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