XX INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEM *"Relativistic Nuclear Physics & Quantum Chromodynamics" Dubna, October 4-9, 2010*

External beams at the Nuclotron facility: status and nearest tasks

P. Rukoyatkin

Veksler and Baldin Laboratory of High Energy Physics Joint Institute for Nuclear Research Dubna, Russia

External beams at the Nuclotron facility : outline

- As introduction: NICA project and external beam lines, Nuclotron M, slow extraction, transporting and distributing over experimental areas of the primary extracted beams.
- Secondary fragment beams.
 - Polarized (unpolarized) neutrons the neutron beam line and secondary polarized protons.
 - Secondary beams of light unstable nuclei.
- Development of diagnostics instruments for the external beam lines in the Nuclotron M project frames.

Nearest actual task

NICA location in the existing buildings*

* Design and Construction of Nuclotron-based Ion Collider fAcility (NICA), CDR, Draft 2.01.08

Preliminary drawing of the NICA elements location at VBLHEP site

In: "Advance in the NICA Collider Concept ", report for the MAC, Dubna 2010, editors I.Meshkov, A.Sidorin, G.Trubnikov

Accelerator facilities of LHEP

Nuclotron slow extraction

Parameter	@	Units	Value	Beam profiles at the F_5 focus. Deuterons, p_{beam} = 4.3 GeV/c, σ_x = 2.6 mm, σ_y = 3.0 mm			
Momentum range	$Z/A = \frac{1}{2}$	Gev/c/amu	0.6 - 6.8				
Momentum spread, σ		%	0.04 - 0.08				
Extraction time		sec	10				
Beam emittance	P _{max}	mm∙mr	2π				
Beam size in a waist, σ	P _{max}	mm	<u><</u> 1				
Extraction efficiency		%	> 90	-32 -16 0 16 32 -32 -16 0 16 32			

	Current	Src. type
р	5·10 ¹⁰	Duoplasmotron
d	5·10 ¹⁰	#
⁴He	3·10 ⁹	#
d↑	2.10 ⁸	ABS ("Polaris")
⁷ Li	4.10 ⁹	Laser
^{11,10} B	1.10 ^{9,8}	#
¹² C	2.10 ⁹	#
²⁴ Mg	1.10 ⁸	#
¹⁴ N	1.10 ⁷	ESIS ("Krion-2")**
²⁴ Ar	2.10 ⁷	#
⁵⁶ Fe	1.10 ⁶	#
¹³¹ Xe	~10 ³	#

Run #41, March 2010

Experimental estimation of extracted nuclei charge

- \Box Nuclotron run #41, acceleration of the ⁴²Xe₁₂₄ ions from the Krion source
- □ Slow extraction at t = 1 GeV/n \rightarrow ⁵⁴Xe₁₂₄
- Detector: scintillator, d=2mm, FEU-85 PMT, 1.5 m downbeam exit flange

 $z_{extr.} > 40$

8

P.Rukoyatkin, "External beams at the Nuclotron facility"

External beams at the Nuclotron facility

- As introduction: NICA project and external beam lines, Nuclotron M, slow extraction, transporting and distributing over experimental areas of the extracted beams.
- □ Secondary fragment beams.
 - Polarized (unpolarized) neutrons the neutron beam line and secondary polarized protons.
 - Secondary beams of light unstable nuclei.
- Development of diagnostics instruments for the external beam lines in the Nuclotron M frames.

Nearest actual task

Beam lines and setups layout in an extracted beam experimental area

Neutron beam line to the PPT

XX Baldin's ISHEPP, October 9, 2010

Polarized neutron beams at PPT

Parameter	Units	I	Ш
Momentum range	GeV/c	≅ 1 – 4.5	≅ 1 – 6.5 (6.8)
Intensity at p _{max}	ррс	2 – 4·10 ⁶	2 – 4·10 ⁷
Polarization		≅ 0.55	≅ 0.90
Momentum spread (FWHM)	%	≅ 5	≅ 5
Angular spread (σ)	mr	1 – 1.5	1
Full beam size at PPT	mm	≤ 30	≤ 30

Table: Polarized neutron beams parameters

I - Synchrophasotron + Polaris II- Nuclotron-M + SPI $\left. \begin{array}{c} (P^2I)_{||}/(P^2I)_{||} \cong 25 \end{array} \right.$

Secondary polarized proton beams forming: $d\uparrow + A \rightarrow p\uparrow + ...$

- Measuring proton-nucleus analyzing power $\hat{p} + C$, $\hat{p} + CH_2$ (SMS MSU, SPHERE), $\hat{p} + CH_2$ (ALPOM) carried out experiments.
- Search for the spin-dependent phenomena of π^0 and η -meson production in $\uparrow p + \uparrow p$, $\uparrow n + \uparrow p$ collisions (using polarized nucleon beams at PPT) DELTA experiment, ready to take data setup.
- Measurement of the energy dependence of the spin correlation parameter A_{00nn} in quasi-elastic $\int p \int p$ scattering at angles close to $\theta_{cm} = 90^{\circ}$ pp SINGLET experiment, proposal.

References and discussions on the problems are in the review: F. Lehar, Part. & Nucl. 36, (2005)

Estimated parameters of polarized proton beams at the PPT for the Nuclotron-M + SPI beam

	Scheme, initial conditions $\epsilon = 5\pi \text{ mm·mr}, I_d = 10^{10}, \text{ pd} = 9 \text{ GeV/c}$				
1	Target position: Q ₅ - Q ₈ lenses polarities: Primary beam X,Y [*] :	f4 FDDF 1.0, 2.0	$\begin{array}{l} Y_{p} \ = \ 1.3 \cdot 10^{8} \\ h_{p} \ = \ 0.0 \ \% \\ \sigma_{x} \ = \ 4.1 \ mm \\ \sigma_{y} \ = \ 2.5 \ mm \\ \sigma_{p} \ = \ 0.6 \ \% \end{array}$		
2	Target position Q ₅ - Q ₈ lenses polarities : Primary beam X,Y [*] :	f3 FDFD 1.0, 2.5	$\begin{array}{l} Y_{p} = \textbf{4.0} \ \cdot 10^{8} \\ h_{p} = 0.4 \ \% \\ \sigma_{x} = 4.2 \ \text{mm} \\ \sigma_{y} = 3.7 \ \text{mm} \\ \sigma_{p} = 1.3 \ \% \end{array}$		

- Sizes, mm

 Y_p - proton yield estimation from 20 cm beryllium target

h_p beam halo (particles, not incoming into the PPT working volume)

 $\sigma_{x,y}\,,~\sigma_{p}$ - $\,$ r.m.s. beam sizes and momentum spread

External beams at the Nuclotron facility

- As introduction: NICA project and external beam lines, Nuclotron M, slow extraction, transporting and distributing over experimental areas of the extracted beams.
- □ Secondary fragment beams.
 - Polarized (unpolarized) neutrons the neutron beam line and secondary polarized protons.
 - Secondary beams of light unstable nuclei.
- Development of diagnostics instruments for the external beam lines in frames of the Nuclotron M project.

Nearest actual task

Fragment separation scheme: detector layout

XX Baldin's ISHEPP, October 9, 2010

Beam by reactions ${}^{6}Li + A \rightarrow Nucleus + ...$

21

Energy losses spectrum in the S_2 analyzer (5 mm)

on the cut sample

Secondary nuclear beams for emulsion experiments

Summary

	$p_0,$	Proj.	Sec. ^a	Registered components fractions, $\%$						
	$A \; GeV/c$			Z=1	2	3	4	5	6	7
1	2.7	^{6}Li	^{6}He	> 99	0.85					
2	1.7	7Li	^{7}Be	2 <	28.3	$\simeq 5$	64.7			
3	2.0	$ {}^{10}B$	$ {}^{9}Be$		5.6	19.2	66.8	8.4		
4	2.0	^{10}B	^{8}B		19.8		9.1	61.6	9.5	
5	2.0	^{12}C	9C		37.3	2.2	4.0	5.6	50.9	
6^b	2.0	$1^{12}C$	^{12}N		$\simeq 10$		53		34	\simeq 3
7^{b}	2.0	$1^{12}C$	^{7}Be		$\simeq 5$		32		63	
8^{b}	2.0	$1^{12}C$	^{9}Be		$\simeq 3$	31	29	37		

^{*a*}Nominal beam line momentum corresponds to the fragment b **D**_{reliminant}

^bPreliminary

External beams at the Nuclotron facility

- As introduction: NICA project and external beam lines, Nuclotron M, slow extraction, transporting and distributing over experimental areas of the extracted beams.
- Secondary fragment beams.
 - Polarized (unpolarized) neutrons the neutron beam line and secondary polarized protons.
 - Secondary beams of light unstable nuclei.
- Development of diagnostics instruments for the external beam lines in frames of the Nuclotron M project.

Nearest actual task

Beam lines state monitoring: deviations of currents in elements

□ A new industrial DAQ board based system for monitoring of lines elements currents have been put into operation.

- Thin Mylar windows (20 µm)
- Constant blow-through by Ar

External beams at the Nuclotron facility

Nearest actual task:

- Increase magnetic rigidity in "weak" parts (4 5 elements) of the lateral beam lines : narrowing bending magnet gaps, changing magnets type, installing additional 1-2 units. Development and realize "soft" focusing beam transporting schemes taking into account low emittance values of the extracted beams at high energies.
- Parasitic matter minimizing/eliminating from the beam line traces: thinner separating membranes, minimal (or no) air gaps, low matter diagnostics detectors.
- Modernization of the power supply of the beam lines including developing of a modern control system of the system.
- Creating new additional diagnostics instruments.

Conclusions:

The Nuclotron beam lines operation during the NICA facility creation gives opportunities to

- **Complete/extend current experimental program;**
- □ Realize of a large scale heavy ions fixed target experiment;
- Perform R&D and test of MPD, SPD and other detector systems;
- Get experiences for new generation of experimentalists for further participation in NICA.

Thank for your attention