The freccisil d-iners-ion
-stiulerions for inle everis

Rogachevsky Oleg
Vokal Stanislav
ISHEPP 2010 JINR

Deterministic

Collections of small entities (particles or whatever) behave haphazardly, even though physical laws govern the particles individually

Deterministic chaos -chaos results from deterministic process

How to measure chaos?

Fractals deal with geometric patterns (represented chaos) and quantitative way of characterizing these patterns. Chaos, in contrast, deals with time evolution and its underlying or distinguishing characteristics

Garnett P. Williams "Chaos Theory Tamed"

The fractal dimension of sets observed in the dynamics can be used as quantitative measure of the chaoticity

Fractal

According to Mandelbrot, who invented the word:
"I coined fractal from the Latin adjective fractus. The corresponding Latin verb "frangere" means "to break:" to create irregular fragents. It is therefore sensible - and how appropriate for our needs! - that, in addition to "fragmented" (as in fraction or refraction), fractus should also mean "irregular," both meanings being preserved in fragment."
(The Fractal Geometry of Nature, page 4.)

Fractal dimensif

Koch's arc

A fractal is a shape made of parts similar to the whole in some way
E.Feder

$$
D=\lim _{r \rightarrow 0} \frac{\log N(\boldsymbol{r})}{\log (1 / r)}
$$

r-scale
$\mathrm{N}(\mathrm{r})$ number of elements in fractal at given scale

$$
D^{\text {Koch's arc }}=\lim _{n \rightarrow \infty} \frac{\log 4^{n}}{\log 3^{n}}=\frac{\log 4}{\log 3}=1.261 \ldots
$$

STAR $A u+A u \sqrt{ } s=62 \mathrm{GeV}$

Fractal dimensions in ηp_{t} space RO ICHEP 2006

The choice of the parameters for algorithm define the position of the gap

STAR Au u Au $\sqrt{ } s=200 \mathrm{GeV}$

Fractal dimensions in ηp_{t} space RO ICHEP 2006

$D^{\eta p t} \operatorname{STAR} A u+A u \sqrt{ }=200 \& 62 \mathrm{GeV}$

The yield of entropy events increases with growth of multiplicity and collisions energy

Jet quenching

Emulsion ex

$$
\eta=-\ln \left[\tan \frac{\Theta}{2}\right]
$$

- In the measured interactions all charged particles were classified according to the commonly accepted emulsion experiment terminology into groups.
- The group of relativistic (shower) particles includes particles with $\beta>0.7$ produced in the interactions as well as fast single-charged projectile spectators.
- The polar (Θ) and azimuthal (Ψ) emission angles of all tracks have been measured.
- The value of pseudorapidity has been calculated for each relativistic particle

${ }^{197} \mathrm{Au}+\mathrm{Em}$ at $11.6 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$ BNLAGS, Experiment E863

28 Sept 2010
O.Rogachevsky

$\eta \& \varphi$ dimensions

O.Rogachevsky

$\eta \varphi$ dimensions for

28 Sept 2010

$\mathrm{Pb}+\mathrm{Em}$ collisior

${ }^{208} \mathrm{~Pb}+\mathrm{Em}$ at $158 \mathrm{~A} \mathrm{GeV/c}$
CERN SPS, EMU12 Experiment

628 minimum bias events Gaitinov A. Sh. et al.,
Proc. of the XVII Meeting of the EMU01 Collaboration, Dubna, Russia, May 18-20, 1999. Dubna, 2000. p.143.

$\mathrm{Pb}+$ Em collisio

$\eta \& \varphi$ dimensions

28 Sept 2010
O.Rogachevsky

$\eta \varphi$ dimensions for

SUMIMARY

Fractal dimesion is sensitive to the global event structure

The legend of " ${ }^{\text {T}}$ The Blind Men and the the Elephant", written by John Godfrey Saxe in the late 1800s, told the story of six vision-impaired men, each valuing continuous learning, who wanted to "‘see" an elephant.

