ISHEPP XX Relativistic Nuclear Physics & Quantum Chromodynamics, 4-9 October 2010, Dubna

METHODS AND RESULTS OF THE ^{nat}Pb(d,f), ²⁰⁹Bi(d,f) AND ²⁰⁹Bi(d,xnyp) REACTIONS CROSS SECTIONS MEASUREMENTS AT 1.6 AND 4 GeV DEUTERON BEAMS

A.S. Patapenka, A.A. Safronava, I.V. Zhuk, V.A. Voronko, V.V. Sotnikov, P.A. Martynenko, Ju.T. Petrusenko

Joint Institute for Power and Nuclear Research – "Sosny", NAS of Belarus

National Science Center "Kharkov Institute of Physics and Technology", NAS of Ukraine

Presenter: Patapenka Andrei a.potapenko@tut.by

Outline

• Experimental technique:

SSNTD technique for fission cross-section measurement

Technique for direct reaction cross-section measurement

• Experimental results

Experimental

Collaboration "Energy plus Transmutation"

Joint Institute for Nuclear Research (Dubna, Russian Federation) since 1997

Ν

Т

R

0

D

U

С

Т

0

Ν

EXPERIMENTAL

Experimental technique for fission reaction rate measurements at high energies

Experimental technique for (*d*, *xn*) and (*d*, *pxn*) reaction rate measurements

SSNTD for fission rate measurement : concept

The basis of fission reaction rates measurement using **solid nuclear track detectors** (SSNTD) is the parity between a density of tracks formed on the surface of the detector, (irradiated at close contact to a radiator which is a source of fission fragments), and investigated neutron flux.

Reaction rate is proportional to the track density on the detector.

$$N_q^i = A^i \mu^i \varepsilon_q d_q \rho_q P \int_0^\infty \sigma_f^i(E) \varphi^P(E) dE$$

SSNTD for fission rate measurement : concept (2)

Ε

X

Ρ

Ε

R

Μ

Ε

Ν

Т

A

L

S

S

Ν

Т

D

SSNTD for fission rate measurement : concept (3)

This definition of the k implies that if fission track density N, is measured in a sample, then the ratio of N / k represents the number of fissions per atom of the fissionable nuclei in the foil during the irradiation. depend on radiator's parameters

 $k_q^{sens} = A^i \mu^i \varepsilon_q d_q \rho_q$ depends on ion type (Z-number)

depend on fission processes

SSNTD for fission rate measurement : concept (3)

Sensitivity factor depends on:

 Linear momentum transfer from projectile to the target nuclei - calculation were performed with analytical model (for fission fragments distributions) + TRIM code

 <u>Fission anisotropy (in c.m.s.)</u> - calculation were performed with analytical model (for fission fragments distributions) + TRIM code

3. <u>Multifragmentation</u> (at the projectile energy > 500 MeV) - calculation were performed with FLUKA (RQMD and DPMJET models) + TRIM code

Ε

X

Ρ

Ε

R

Π

Μ

Ε

Ν

Τ

A

S

S

Ν

Т

D

SSNTD for fission rate measurement: fission anisotropy

Ε

Х

Ρ

Ε

R

Μ

Ε

Ν

Т

A

S

S

Ν

Т

D

$$W(\mathcal{G}) = \frac{k_{norm}}{2\pi} (1 + B\cos^2 \mathcal{G})$$

where *B* is the angular anisotropy factor; k_{norm} is a normalization constant; ϑ is angular coordinate.

(Data and formula are taken from <u>A. И. Обухов и др. ЭЧАЯ 32/2. 2001</u> and <u>I. V. Ryzhov *et al., J. Nucl. Sci. Techn., Suppl. 2, 295-298* (2002))</u>

results

- 1. Effect is negligible at the energy > 1 GeV
- 2. Correction factor don't exceed 2-3 %

Angle with Z axis, grad.

SSNTD for fission rate measurement: non-fissionable background

Ε

X

Ρ

Ε

R

Μ

Ε

Ν

Т

A

L

S

S

Ν

Т

D

SSNTD for fission rate measurement : sensitivity factor

Calculated values

Metallic radiator	U	Bi	Pb	Au	W	Та
Sensitivity factor <i>w</i> , ×10 ¹⁹ , track×cm ⁻² × deuteron ⁻¹	0,95	0,92	1,05	1,03	0,95	0,79

Experimental values for 1.U radiator – (0,96±0,02) ×10¹⁹ 2.Pb radiator – (1,03±0,11) ×10¹⁹

Activation method for (d, xn) and (d, pxn) reactions rates measurements

Corrections

- decay during cooling, measurement, irradiation (intensity data from Nuclotron)
- 2. unequable irradiation (intensity data from Nuclotron)
- 3. coincidences (MCNP)
- 4. non point-like emittors (MCNP)
- 5. detector deadtime
- 6. detector efficiency

XX International Baldin Seminar, 4-9 October 2010, Dubna

SSNTD for fission rate measurement : scheme of sandwiches

- 1. Al foil (flux monitor)
- 2. SSNTD (mica)
- 3. Radiators (^{nat}U, ²⁰⁹Bi, ^{nat}Pb)

(Size of Al foils: 12 x 12 x 0,1 mm)

Deuteron beams profiles and sensors location

Gaussian approximation of experimental data from SSNTD sensors / Pb(d,f) reaction /

Track densities on the top of the assembly is proportional to spatial distribution of primaries particles.

The traces of one bunch of beam particles on polaroid film placed in front of the target

Deuteron beams profiles and sensors location

R

S

U

L

Γ

S

S

S

Ν

Т

D

Results of experimental measurements of fission cross-section for deuteron energy 1.6 and 4.0 GeV (SSNTD method)

R

S

U

L

Т

S

S

S

Ν

Т

D

Samples	Fission cross- section for deuteron energy 1.6GeV (experiment, present work) mb	Fission cross- section for deuteron energy 2.1GeV (experiment, EXFOR library) mb	Fission cross- section for deuteron energy 4.0GeV (experiment, present work) mb
U-nat	1700 ± 300	1654 ± 340	-
Pb-nat	200 ± 50	182 ± 40	170 ± 40
Bi-209	220 ±80	323 ± 60	310 ± 60

Calculated fission cross-section at 1.6 GeV deuterons for U-nat using MCNPX 2.6C

U-nat $\sigma exp = 1.7\pm0.3b$, Present work

Calculations were performed with MCNPX 2.6c (S.R. Hashemi-Nezhad).

Calculation model	Fission cross section, b	$(\sigma_{exp} - \sigma_{cal}) / \sigma_{exp}$
Bertini + RAL	1.31 (0.4)	25.31
Bertini + ABLA	1.51 (0.4)	13.94
CEM03 + RAL	1.31 (0.4)	25.31
CEM03 + ABLA	1.51 (0.4)	13.89
INCL4 + RAL	1.47 (0.4)	16.17
INCL4 + ABLA	2.02 (0.3)	-15.43

Experimental independent (ind) and/or cumulative(cum) cross-sections of ²⁰⁹Bi(d,pxn)^ABi reactions; (x=210-A).

			Cross-sections, mb				
		E _γ , keV	E _d =1,	6 GeV	E _d =4 GeV		
A 11/2			cum		cum		
206	6,24 d	516; 803	58±6	78 ± 6	42 ± 4	56 ± 5	
205	15,3 d	703,5; 1764	65 ± 7	75 ± 7	-	52 ± 5	
204	11,2 h	899; 374	m2+m1+g 35 ± 3	48 ± 4	m2+m1+g 25 ± 4	33 ± 4	
203	11,8 h	820; 1847	m+g 33 ± 3	37,5 ± 3	-	28 ± 3	
201	103 m	629; 936,2; 1014	-	17 ± 2	-	-	
200	36,4 m	1026; 462,3	g 12 ± 2	$\begin{array}{c} g \\ 12 \pm 2 \end{array}$	-	-	

Experimental independet cross-sections of ²⁰⁹Bi(d,xn)^APo reactions; (x=211-A).

R

S

U

Т

S

Α

С

Т

V

Α

Т

0

Ν

			Cross-sections, mb		
Α	T1/2	\mathbf{E}_{γ} , keV	E _d =1,6 GeV	E _d =4 GeV	
207	5,8 h	992,3	$m+g$ 12 ± 2	m+g 9 ± 1,5	
206	8,8 d	1032,3	20 ± 4	14 ± 2.5	
205	1,74h	872,4; 836,8; 849,8; 1001,2	m+g 10 ± 2	-	
204	3,53 h	1016,3; 534,9	13±2	8 ± 4	
203	36,7 m	908,6	m+g 4,5±1,4	-	

Conclusions

- ✓ SSNTD technique was adjusted for high energy fission measurements.
- New experimental values of fission cross sections of ^{nat}U (d,f), ^{nat}Pb (d,f), ²⁰⁹Bi (d,f) reactions were obtained.
- New experimental values of ²⁰⁹Bi (d,pxn) and ²⁰⁹Bi(d, xn) cross sections were obtained.

AKNOWLADGEMENTS

We would like to thank

- Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR), Dubna, Russia and staff of the Nuclotron accelerator for providing us the research facilities used in these experiments.
- JINR for the hospitality during our stay in Dubna
- NASB for supporting of this work

Andrei Patapenka

a.potapenko@tut.by