XX INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS

RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMIC JINR - Dubna, October 4 – 9, 2010

Transverse Parton Distributions Functions in Drell-Yan Processes at FAIR

Marco Maggiora

Dipartimento di Fisica "A. Avogadro" and INFN - Torino, Italy

The future FAIR facility

Key Technical Features

Cooled beams

•Rapidly cycling superconducting magnets

Primary Beams

- •10¹²/s; 1.5 GeV/u; ²³⁸U²⁸⁺
- •Factor 100-1000 present in intensity
- •2(4)x10¹³/s 30 GeV protons
- •10¹⁰/s ²³⁸U⁷³⁺ up to 25 (- 35) GeV/u

Secondary Beams

- •Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- •Antiprotons 3 (0) 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •e A collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

HESR - High Energy Storage Ring

- Production rate 2x10⁷/sec
- P_{beam} = 1 15 GeV/c
- $N_{stored} = 5 \times 10^{10} \overline{p}$
- Internal Target

High resolution mode

- $\delta p/p \sim 10^{-5}$ (electron cooling)
- Lumin. = 10^{31} cm⁻² s⁻¹

High luminosity mode

- Lumin. = 2 x 10³² cm⁻² s⁻¹
- $\delta p/p \sim 10^{-4}$ (stochastic cooling)

HESR: asymmetric collider layout

Asymmetric double-polarised collider mode proposed by PAX people:

- APR (Antiproton Polariser Ring): polarising antiprotons, p > 0.2 GeV/c
- CSR (Cooled Synchrotron Ring): polarised antiprotons, p = 3.5 GeV/c
- HESR: polarised protons, p = 15 GeV/c

The PANDA Detector

Physics Performance Report for PANDA arXiv:0903.3905

The PAX detector

Polarized Antiproton eXperiments

A common goal: the nucleon structure

- A complete description of nucleonic structure requires:
 quark and gluon distribution functions (PDF)
 - quark fragmentation functions (FF)
- @ leading twist and @ NLO; including k_T dependence:
 - Tr Physics Performance Report for PANDA or Finance Repo
- Physics objectives:
 - Drell-Yan (DY) di-lepton production
 - electromagnetic form factors
 - Generalised Parton Distribution (GPD) =>
 Generalised Distribution Amplitudes (GDA)

TMD: κ_{T} -dependent Parton Distributions

Leading-twist correlator depends on

five more distribution functions:

TMD: κ_T -dependent Parton Distributions

Drell-Yan Di-Lepton Production — $\overline{p}p \rightarrow \ell^+ \ell^- X$

Drell-Yan Asymmetries — $\overline{p}^{\uparrow}p^{\uparrow} \rightarrow \ell^{+}\ell^{-}X$

Uncorrelated quark helicities \Rightarrow access chirally-odd functions

TRANSVERSITY

Ideal because:

• h₁ not to be unfolded with fragmentation functions

• chirally odd functions not suppressed (like in DIS)

lepton plane (cm)

Collins-Soper frame: ^[1]Phys. Rev. D16 (1977) 2219.

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow J_{\Psi} \rightarrow \ell^+ \ell^- X$

Phase space for Drell-Yan processes

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow J'_{\Psi} \rightarrow \ell^+ \ell^- X$

QCD higher order contributions might be sizeable at smaller M but cross-sections only are affected, NOT A_{TT}: K-factors are almost spin indipendent^[1]

^[1] Shimizu et al., hep-ph/0503270.

Drell-Yan Di-Lepton Production $\overline{p}p \rightarrow J/_{\Psi} \rightarrow \ell^+ \ell^- X$

Moreover QCD contributions to A_{TT} : drop increasing energy^[1]

^[1] Shimizu et al., hep-ph/0503270.

Drell-Yan Asymmetries — $\overline{p}p \rightarrow \ell^+ \ell^- X$

At higher energy ($s \sim 200 \text{ GeV}^2$) perturbative corrections^[1] are sensibly smaller in the safe region even for cross-sections

^[1]H. Shimizu et al., Phys. Rev. D71 (2005) 114007

Double Spin Asymmetries — $\overline{p}^{\uparrow}p^{\uparrow} \rightarrow \ell^{+}\ell^{-}X$

$$\overline{h}_{1}^{\bar{a}}(X_{1})h_{1}^{a}(X_{2}) \Rightarrow A_{TT} = \frac{\sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\bar{\ell}X\right) - \sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\bar{\ell}X\right)}{\sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\bar{\ell}X\right) + \sigma\left(\overline{p}^{\uparrow}p^{\uparrow} \to \ell\bar{\ell}X\right)} \propto \sum_{a} e_{a}^{2}h_{1}^{a}(X_{1})h_{1}^{a}(X_{2})$$

Drell-Yan Asymmetries — $\overline{p}p \rightarrow \mu^+ \mu^- X$

 $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\left(1+\lambda\cos^2\theta+\mu\sin^2\theta\cos\varphi+\frac{\nu}{2}\sin^2\theta\cos2\varphi\right)$

NLO pQCD: $\lambda \sim 1$, $\mu \sim 0$, $\upsilon \sim 0$

Lam-Tung sum rule: $1 - \lambda = 2v$

- reflects the spin-1/2 nature of the quarks
- insensitive top QCD-corrections

Experimental data ^[1]: $\upsilon \sim 30$ %

^[1] J.S.Conway et al., Phys. Rev. D39 (1989) 92.

Expected polar distribution for DY dilepton production

Perfect agreement with pQCD exptectations!

^[1] McGaughey, Moss, JCP, Annu. Rev. Nucl. Part. Sci. 49 (1999) 217.

Angular distributions for \overline{p} and $\pi^- - \pi$ -N, \overline{p} N @ 125 GeV/c

Angular distribution in CS frame

E615 @ Fermilab π -N $\rightarrow \mu + \mu^{-}X$ @ 252 GeV/c

> $-0.6 < \cos \theta < 0.6$ $4 < M < 8.5 \text{ GeV/c}^2$

Conway et al, Phys. Rev. D39 (1989) 92

Angular distribution in CS frame

E615 @ Fermilab

 π -N $\rightarrow \mu + \mu^{-}X @ 252 \text{ GeV/c}$

30% asymmetry observed for π^-

Conway et al, Phys. Rev. D39 (1989) 92

Does it come from a nuclear effect?

NA10 @ CERN π -N $\rightarrow \mu + \mu^{-}X$ @ 286 GeV/c

Remarkable and unexpected violation of Lam-Tung rule

υ involves transverse spin effects at leading twist ^[2] If unpolarised DY σ is kept differential on k_T , cos2φ contribution to angular distribution provide: $h_1^{\perp}(x_2, \kappa_{\perp}^2) \times \overline{h}_1^{\perp}(x_1, \kappa_{\perp}'^2)$

^[2] D. Boer et al., Phys. Rev. D60 (1999) 014012.

^[1] NA10 coll., Z. Phys. C37 (1988) 545

Drell-Yan Asymmetries — $\overline{p}p \rightarrow \mu^+ \mu^- X$

• $v > 0 \rightarrow$ valence h_1^{\perp} has same sign in π and N

- $\nu(\pi W \rightarrow \mu^+ \mu^- X) \sim h_1^{\perp}(\pi)_{valence} \propto h_1^{\perp}(p)_{valence}$
- $\nu(pd \rightarrow \mu^+\mu^-X) \sim h_1^{\perp}(p)_{valence} \propto h_1^{\perp}(p)_{sea}$
- v > 0 → valence and sea h₁[⊥] has same sign, but sea h₁[⊥] should be significantly smaller
 ^[1] L. Zhu et al, PRL 99 (2007) 082301;
 ^{[12} D. Boer, Phys. Rew. D60 (1999) 014012.

Drell-Yan Asymmetries — $\overline{p}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$ $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} \propto \left(1 + \cos^2\theta + \frac{v}{2}\sin^2\theta\cos^2\varphi + \rho \left|S_{1T}\right|\sin^2\theta\sin(\varphi - \varphi_{S_1}) + \cdots\right)$ $\lambda \sim 1, \mu \sim 0$ $A_{T} = \left| S_{1T} \right| \frac{2\sin 2\theta \sin(\varphi - \varphi_{S_{1}})}{1 + \cos^{2}\theta} \frac{M}{\sqrt{Q^{2}}} \frac{\sum_{a} e_{a}^{2} \left[x_{1} f_{1}^{a\perp}(x_{1}) f_{1}^{\overline{a}}(x_{2}) + x_{2} h_{1}^{a}(x_{1}) h_{1}^{\overline{a}\perp}(x_{2}) \right]}{\sum_{a} e_{a}^{2} f_{1}^{a}(x_{1}) f_{1}^{\overline{a}}(x_{2})}$

> Even unpolarised \overline{p} beam on polarised p, or polarised \overline{p} on unpolarised p are powerful tools to investigate κ_T dependence of QDF

D. Boer et al., Phys. Rev. D60 (1999) 014012.

Transverse Single Spin Asymmetries: correlation functions

All these effects may may lead to Single Spin Asymmetries (SSA):

$$A_{N} = \frac{\mathrm{d}\sigma^{\uparrow} - \mathrm{d}\sigma^{\downarrow}}{\mathrm{d}\sigma^{\uparrow} + \mathrm{d}\sigma^{\downarrow}}$$

Transverse Single Spin Asymmetries in Drell-Yan

^[2] J.C. Collins, Phys. Lett. B536 (2002) 43

Experimental Asymmetries @ PANDA — $\overline{p} p^{(\uparrow)} \rightarrow \mu^+ \mu^- X$

Unpolarised:

 $A^{\cos 2\phi}$ $\frac{d\sigma^{0}}{d\Omega dx_{1} dx_{2} d\mathbf{k}_{T}} = \frac{\alpha^{2}}{12Q^{2}} \sum_{a} e_{a}^{2} \left\{ \left(1 + \cos^{2}\theta\right) \mathcal{F}\left[\overline{f}_{1}^{a} f_{1}^{a}\right] + \sin^{2}\theta \cos 2\phi \mathcal{F}\left[\left(2\mathbf{h} \Box \mathbf{p}_{1T} \mathbf{h} \Box \mathbf{p}_{2T} - \mathbf{p}_{1T} \Box \mathbf{p}_{2T}\right) \frac{\overline{h_{1}^{\perp a}} h_{1}^{\perp a}}{M_{1}M_{2}}\right] \right\}$

$$\mathcal{F}\left[\overline{f}_{1}^{a}f_{1}^{a}\right] \equiv \int d\boldsymbol{p}_{1T}d\boldsymbol{p}_{2T}\delta\left(\boldsymbol{p}_{1T}+\boldsymbol{p}_{2T}-\boldsymbol{k}_{T}\right)\left[\overline{f}_{1}^{a}\left(x_{1},\boldsymbol{p}_{1T}\right)f_{1}^{a}\left(x_{2},\boldsymbol{p}_{2T}\right)+\left(1\leftrightarrow2\right)\right]$$

 $\boldsymbol{A}^{\sin\left(\phi-\phi_{S_{2}}\right)}$ **Single Spin:** $\frac{d\Delta\sigma\uparrow}{d\Omega dx_1 dx_2 d\mathbf{k}_T} = \frac{\alpha^2}{12sQ^2} \sum_a e_a^2 |\mathbf{S}_{2T}| \left\{ \left(1 + \cos^2\theta\right) \sin\left(\phi - \phi_{S_2}\right) \mathcal{F} \left| \mathbf{h} \Box \mathbf{p}_{2T} \frac{\overline{f}_1^{d} f_{1T}^{\perp a}}{M_2} \right| + \right\}$ $-\sin^2\theta\sin\left(\phi+\phi_{S_2}\right)\mathcal{F}\left[h\Box p_{11}\frac{\bar{h}_1^{\perp a}h_{1T}^{a}}{M_1}\right] = \Delta\sin\left(\phi+\phi_{S_2}\right)$ $-\sin^{2}\theta\sin\left(3\phi-\phi_{S_{2}}\right)\mathcal{F}\left[\left(4\boldsymbol{h}\square\boldsymbol{p}_{1T}\left(\boldsymbol{h}\square\boldsymbol{p}_{2T}\right)^{2}-2\boldsymbol{h}\square\boldsymbol{p}_{2T}\boldsymbol{p}_{1T}\square\boldsymbol{p}_{2T}-\boldsymbol{h}\square\boldsymbol{p}_{1T}\boldsymbol{p}_{2T}^{2}\right)\frac{\overline{h}_{1}^{\perp a}h_{1T}^{\perp a}}{2M_{1}M_{2}^{2}}\right]\right]$

^[1]A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014 ^[2]Physics Performance Report for PANDA, arXiv: 0903.3905

Unpolarised Drell-Yan — $\overline{p}p \rightarrow \mu^+ \mu^- X$

Unpolarised DY cross-section allow the investigation of:

- limits of the factorisation and perturbative approach
- relation of perturbative and not perturbative dynamics in hadron scattering

^[1]H. Shimizu et al., Phys. Rev. D71 (2005) 114007

DY Single Spin Asymmetries @ PANDA — $\overline{p} p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$

480K ev^[1] with $E_{\overline{p}} = 15$ GeV on fixed target, $1.5 < M_{\mu\mu} < 2.5$ GeV/c² $R_{DY,\mu\mu}^{[2]} (1.5 < M_{\mu\mu} < 2.5$ GeV/c²) = $2 \cdot 10^{32}$ cm⁻¹s⁻¹ × $0.8 \cdot 10^{-33}$ cm⁻² = 0.16s⁻¹

^[1]A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014 ^[2]Physics Performance Report for PANDA, arXiv: 0903.3905 Experimental Asymmetries @ PANDA — $\overline{p} p^{(\uparrow)} \rightarrow \mu^+ \mu^- X$

480K ev^[1] with $E_{\overline{p}} = 15$ GeV on fixed target, $1.5 < M_{\mu\mu} < 2.5$ GeV/c²

Eff $R_{DY,\mu\mu}^{[2]} \left(1.5 < M_{\mu\mu} < 2.5 \text{ GeV/c}^2 \right) = 0.16 \text{ s}^{-1} \times \frac{1}{2} = 0.08 \text{ s}^{-1} \square 200 \text{K Ev month}^{-1}$

s ~ 30 GeV^2

^[1]A. Bianconi and M. Radici, Phys. Rev. D71 (2005) 074014 ^[2]Physics Performance Report for PANDA, arXiv: 0903.3905

The transverse spin physics program @ FAIR

Drell-Yan dilepton production

- double spin DY is the dream option: can antiproton be polarised?
- new physics from unpolarised DY since the very beginning
- extense SSA program in DY and in hadron production

Collaborations: PANDA & PAX

THANK YOU!

QUESTION TIME

Collinear kinematics: κ_{T} -independent Parton Distributions

Partonic distributions $q = q_+^+ + q_-^+$ $g = g_+^+ + g_-^+$ helicity distributions $\Delta q = q_+^+ - q_-^+$ $\Delta g = g_+^+ - g_-^+$

Unpolarized $q(x,Q^2)$, $g(x,Q^2)$ and long. polarized $\Delta q(x,Q^2)$: well known Gluon $\Delta g(x,Q^2)$: under investigation

Transversity $h_1(x)$

 $\delta q(x)$: a chirally-odd, helicity flip distribution function $\delta g(x)$: there's no gluon transversity distribution; transversely polarised nucleon shows transverse gluon effects at twist-3 (g₂) only

SOFFER INEQUALITY

An upper limit: $|h_1(x)| \le \frac{1}{2} |f_1(x) + g_1(x)|$

- can be violated by factorisation at NLO
- inequality preserved under evolution to larger scales only

TMD: κ_T -dependent Parton Distributions

Drell-Yan Asymmetries — $p^{\uparrow}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$

PROBLEMATIC MEASUREMENT

^[1] Martin et al, Phys.Rev. D60 (1999) 117502.
^[2] Barone, Colarco and Drago, Phys.Rev. D56 (1997) 527.

Transverse Single Spin Asymmetries in Drell-Yan

Hyperon production Spin Asymmetries

 Λ production in unpolarised pp-collision:

Several theoretical models:

• Static SU(6) + spin dependence in parton

fragmentation/recombination^[1-3]

• pQCD spin and transverse momentum of hadrons in fragmentation ^[4]

^[1]T.A.DeGrand et al., Phys. Rev. D23 (1981) 1227.
^[2] B. Andersoon et al., Phys. Lett. B85 (1979) 417.
^[3] W.G.D.Dharmaratna, Phys. Rev. D41 (1990) 1731.
^[4] M. Anselmino et al., Phys. Rev. D63 (2001) 054029.

Analysing power Depolarisation $A_{N} = \frac{1}{P_{B} \cos \theta} \frac{N_{\uparrow}(\phi) - N_{\downarrow}(\phi)}{N_{\uparrow}(\phi) + N_{\downarrow}(\phi)}$ $D_{NN} = \frac{1}{2P_{B} \cos \phi} \left[P_{\Lambda\uparrow} (1 + P_{B}A_{N} \cos \phi) - P_{\Lambda\downarrow} (1 - P_{B}A_{N} \cos \phi) \right]$ Key to distinguish between these models

 Data available for D_{NN} :

 3.67 GeV/c
 $D_{NN} < 0$

 13.3 -18.5 GeV/c
 $D_{NN} \sim 0$

 200 GeV/c
 $D_{NN} > 0$
 D_{NN} @ 100 GeV/c MISSING

Hyperon production Spin Asymmetries

Polarised target: $\overline{p}p^{\uparrow} \rightarrow \overline{\Lambda} + \Lambda$.

Transverse target polarisation

^[1] complete determination of the spin structure of reaction

Existing data: PS185 (LEAR)^[2]

[1] K.D. Paschke et al., Phys. Lett. B495 (2000) 49.[2] PS185 Collaboration, K.D: Paschke et al., Nucl. Phys. A692 (2001) 55.

Models account correctly for cross sections. Models do not account for D_{NN}^{Λ} or K_{NN}^{Λ} .

NEW DATA NEEDED