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OUR NUMERICAL APPLICATIONS:
Description of the experimental data of the NN , πN and πN −

γπN scattering reactions in the ∆ resonance region.



CONTENT & Intention:

(I) Are the 4D Bethe-Salpeter equa-
tions more general and consistent than
the time ordered from the beginning
3D field-theoretical equations?

(A) Nonphysical degrees of freedom in the 4D Bethe-Salpeter
equations

(B) INPUT and OUTPUT in the 4D and 3D field-theoretical
equations

(C) 3D time-ordered field-theoretical equations as the non
avoidable intermediate reduction of the 4D Bethe-Salpeter equa-
tion.

(D) Why are the 3D time-ordered field-theoretical equations
more convenient by numerical solutions?

(II) 4D and 3D field theoretical equa-
tions with and without quarks.

The most compact (convenient) 3D time-ordered field-theoretical
equations with quarks.

(III) The three-body 3D time-ordered
field-theoretical equations.

(A) Construction of the COMPLETE set of the 3-body forces.

(B) Relativistic field-theoretical (with creation and annihila-
tion) generalization of the Faddeev equations.

(C) Principal non linearity of the 3D and 4D field theoretical
equations



Why do we need the field-theoretical
approach:

Construction of the relativistic (or non-relativistic)

potentials in the 3D Schrödinger-type equations i.e. a

relativistic field-theoretical generalization of the usual

non-relativistic collision theory.

(HO + V )|Ψ >= E|Ψ >

or

T (E) = V + V (E −HO − V + iǫ)−1T (E); T (E) ≡ V |Ψ >

via the vertex functions. The non-relativistic limit

of all relativistic field-theoretical equations reproduce

the same Schrödinger equation.

A. Quasipotential 3D reductions of the Bethe-Salpeter

equation, (Logunov-Tavkhelidze, Blancenbecler-Sugar

etc.)

B. Relativistic Hamiltonian approach within Old per-

turbation theory (Kadyshevsky, Karmanov, etc),

C. Old perturbation theory or spectral decomposi-

tion over the asymptotic states (Chew-Low equations,

our approach)

Our approach presents a linearization of the gener-

alized unitarity condition.

This condition is also a matrix representation of the

Bogoljubov-Medvedev-Polivaniv causality principle.
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Figure 1:

Sa+b←c+d = δ(pa − pc)δ(pb − pd) + (2π)4iδ(4)(pa + pb − pc − pd)Aa+b←c+d.

Sought amplitude:

Aa+b←c+d =< out;pa|u(pbJ(0)|pcpd; in >

Aa+b←c+d =< 0|bpa(out)u(pb)J(0)b+pc
(in)b+pd

(in)|0 >

Nucleon Source J(x) = (iγµ
∂

∂xµ
−mN)Ψ(x)

bp(out(in)) =
∫
d3xeipxu(p)γoΨout(in)(x)

INTRODUCING: bp(xo) =
∫
d3xeipxu(p)γoΨ(x)

USING:

b+p (out)− b+p (in) =
∫
dxo

∂

∂xo
bp(xo) =

∫
d4xJ(x)e−ipxu(p)



Aa+b←c+d = u(pb

∫
d4xe−ipcx < out;pa|T(Jb(0)Jc(x))|pd; in > u(pc

SUBSTITUTION:
∑
n |n; in >< in;n| = 1̂

FINAL EQUATION:

Aa+b←c+d =Wa+b→c+d+
∑

g+h
A+
a+b←g+h

δ(3)(pa + pb − pg − ph)

poa + pob − p
o
g − p

o
h + iǫ

Ag+h←c+d

have the form of the generalised unitarity condition for the Lippmann-

Schwinger-type equations: T = V + T+GoT

This condition is also the matrix representation of the Bogoljubov-

Medvedev-Polivaniv causality principle.

OUR RESULT:

⇐⇒ Ta+b←c+d(E) = Ua+b←c+d(E)+
∑

g+h
Ua+b←g+h(E)

1

E − Eg+h + iǫ
Tg+h←c+

T (E = Ea+b = Ec+d) = Aa+b→c+d; Ua+b→c+d(E = Ea+b) =Wa+b→c+d

Final relativistic Lippmann-Schwinger-type equation for the re-

action a + b← c + d

T (p′,p, E) = V (p′,p, E)+
∫ d3q

E + iǫ− E(q)
V (p′,q, E)T (q,p, E)

E(q) =
√
m2
a + q2 +

√
m2
b + q2



NN → N ′N ′ Reaction

V = [equal−timecommutator] + [onmass−shell meson exchange
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Figure 2: Time-ordered part of the NN potential with ON MASS SHELL

intermediate pions. The full circles denote the vertex functions the one
off-mass shell nucleon.

The NN potential u(pb < out;p′|{J(0), b+p (0)}|p; in >. For

the 3-point renormalizable meson − NN Lagrangian (L =

gπΨγ5ΨΦπ) arise ONE OFF MASS-SHELL π, σ, ρ, ω, ... meson

exchange-diagram (A). The non-renormalizable Lagrangian

(L = gπ/mπΨγµγ5Ψ∂
µΦπ) generate the four nucleon overlap-

ping (contact) term diagram (B) without intermediate propa-

gators. The shaded circle corresponds to the vertex function

< p′N |jmeson(0)|pN > with off-mass shell meson.
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Figure 3: Every kind of input vertex functions contains two on-mass shell
particle states and one can construct these vertices directly from experi-

mental data, or using the dispersion relations and other inverse scattering
methods.

INPUT 4D Bethe-Salpeter equation: 3-variable vertex.

OUTPUT for binary reactions: 2-variable on shell ammplitudes.



Nonphysical degrees of freedom in the 4D Bethe-Salpeter equa-

tions

Relative time-coordinate (A. Klein, Logunov-Tavkelidze

3D time-ordered field-theoretical equations as the non avoid-

able intermediate reduction of the 4D Bethe-Salpeter equation.

(I) on shell 4D amplitude of Bethe-Salpeter and

Aa+b←c+d =< out;pa|u(pbJ(0)|pcpd; in > coincides.

(II) One can reproduce the 3D time-ordered equation t = V +

V GoT from the Bethe-Salpeter equation T = w + wG≀T .

v = w + w
[
G′ −Go

]
v, where T 3D = T

A special sum of the Bethe-Salpeter potentials reproduce 3D

time-ordered potential v.

v is ANALYTICALLY defined via equal-
time commutators and on mass shell parti-
cle exchange amplitudes.



FORMULATION WITH QUARKS:

HAAG-NISHIJIMA-ZIMMERMANN (1958)

and HUANG-WELDON (1975) approach of the com-

posite particle in quantum field theory.

ΨpN
(Y ) =

∫
d4r3d

4r1,2χ̃
†
pN

(Y = 0, r1,2.r3)T
(
q1(y1)q2(y2)q3(y3)

)
,

where Y , r1,2 and r3 are the Jacobi coordinates y1 =

Y − η3r3 + η2r1,2, y2 = Y − η3r3 − η1r1,2, y3 = Y + η1,2r3

χpN
(y1, y2, y3) =< 0|T

(
qi(y1)qj(y2)qk(y3)|pN , sN , iN ; in >

BpN
(xo) =

∫
d3x exp (ipNx)u(pN)γoΨpN

(x)

Bin(out)(pN) = lim
xo→−∞(+∞)

BpN
(xo),

{
B+
in(out)(p

′),Bin(out)(p)
}
= (2π)3

poN
mN

δ(p′ − p);



Figure 4: The NN amplitude with quarks

AN ′+N ′←N+N =< 0|Bout(pN ′)u(pN′)J(0)B+
in(pN)B+

in(pN)|0 >

The completeness condition
∑
n |n; in >< in;n| = 1̂, S-

matrix Smn =< out;m|n; in >, S-matrix reduction for-

mulas, the form of the sought amplitudes AN ′+N ′←N+N ,

generalized unitarity condition in the quantum field

theory with and without quarks are the same in the

field theoretical approach with quarks.

Consequently, the form of the considered 3D equa-

tion T = v+vGoT and the form of the potential v remain

be the same.

RESULT: the intermediate quark propagation does

not contribute in the unutarity condition of the hadron-

hadron scattering reactions.



NN → N ′N ′ potential with quarks

V = [equal−timecommutator] + [onmass−shell meson exchange
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Figure 5: Time-ordered part of the NN potential with ON MASS SHELL

particle exchange remains be the same.

The equal-time commutators part of the NN potential con-

sists of the ONE OFF MASS-SHELL π, σ, ρ, ω, ... meson exchange-

part (A). and the overlapping (contact) part which is con-

structed through the quark-gluon exchange diagrams (B).

Thus instead of the contact terms from the non-renormalizable

Lagrangian (L = gπ/mπΨγµγ5Ψ∂
µΦπ) in the local quantum

field theory in the formulation with quarks appears contact

terms from the quark-gluon exchange.



II.THREE-BODY EQUATIONS for 3 fermions (3e,Nd-NNN)
α = 1′, 2′, 3′, f ′d′ and β = 1, 2, 3, fd
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Sα,β =< out;α|β; in >=< out; α̃|bpa

(in)|β̃; in > −(2π)4iδ(4)(Pα − Pβ)Tα,β

α = a+ α̃; β = b+ β̃

pa = (
√
m2

a + p2
a,pa) ≡ (Epa

,pa).

In the S-matrix approach one can separate from the beginning

the connected and the disconnected parts of amplitudes and one

can write independent equations for these connected and discon-

nected parts

Mαβ =< out; α̃|Jpa
(0)|β; in >=Mdc

αβ +Mcon
αβ

Equation for the Heisenberg fermion field operators

Jpa
(x) = Z−1/2

a u(pa)(iγµ∂
µ
x −ma)ψa(x)

Using S-matrix reduction formulas, in the same way as for the

2-body case we get



Mcon
αβ =< out; α̃|b+pb

(out)Jpa
(0)|β̃; in >con

− < out; α̃|{Jpa
(0), b+pb

(0)}|β̃; in > +i
∫
d4xe−ipbx < out; α̃|T (Jpa

(0)Jpb
(x))|β̃; in >con,

where

b+pb
(x0) = Z

−1/2
b

∫
d3xe−ipbxu(pb)γoψb(x)

and for the disconnected part of the 3-body amplitude we have
independent set of equations

Mdc
αβ(Eβ) = V dc

αβ +
∑

γ
Mdc

αβ(Eγ)
1

Eβ −Eγ + iǫ
Mdc

β,γ

∗
,

Substituting
∑

n |n; in >< in;n| = 1̂ we obtain for the connected
part of amplitude
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Wαβ = − < out; α̃|{Jpa
(0), b+pb

(0)}|β̃; in >

+(2π)3 ∑

n=1′′2′′3′′b′′,f ′′d′′,...

< out; α̃|Jpa
(0)|n; in >

δ(3)(pb + Pβ̃ −Pn)

Epb
+ P o

β̃
− P o

n + iǫ
< in;n|Jpb

(0)|β̃; in

−(2π)3 ∑

l=f,fb,...

< out; α̃|Jpb
(0)|l; in >

δ(3)(−pb + Pα̃ −Pl)

−Epb
+ P o

α̃ − P
o
l

< in; l|Jpa
(0)|β̃; in >,

(3.8)

where n = 1′′2′′3′′b′′, f ′′d′′, ... denotes the four body states with the
intermediate b′′ = γ ′′ for 3e and b′′ = π′′, σ′′, ... for NNN or Nd.
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The advantage of this spectral decomposition formula is that it
does not need the splitting into four pieces Vαβ =

∑3
i=1 V

i
αβ + V c

αβ

in order to taken into account the disconnected parts in the per-
turbation series. Besides this equation are free from the double-

counting problem which appear due to special disconnected dia-
grams.

Using the linearisation procedure of such equations, one get the

equivalent Lippmann-Schwinger-type equations

Tα,fd(Efd) = Uα,fd(Efd) +
∑

γ
Uαγ(Efd)

1

Efd − Eγ + iǫ
Tγ,fd(Efd),

where Efd = Ed + Ef , α, γ = 3f, fd and Uαγ(E) is unambiguously
determined from the connected part of potentials wαγ.

The solution of the three-body equations (i.e the 123 → 1′′2′′3′

and 123 → 3′d′′ transition amplitudes) participate in the wc
αγ po-

tential in the diagrams 3B and 3C. One can rid the three-fermion
potential of such type nonlinearities after introduction of a new

amplitudes fα,β = Fα,β + Aα,β, where the choice of Aα,β is condi-
tioned by cancellation of the terms in Fig. 2B and in Fig. 2C

which have the form fgoA
+ and Agof

+. Afterwards we get the lin-
ear Lippmann-Schwinger-type equation for Fα,β amplitudes with
the disconnected terms. Thus this linearisation procedure shows

connections between the nonlinear Low-type equations and the
Faddeev-type equations for the three-fermion scattering prob-

lems.

Thus we have obtained the spectral decomposition formulas

(or off shell unitarity conditions) for the three-body amplitudes

in the standard quantum field theory.

Mcon
αβ = Wαβ + (2π)3 ∑

γ
Mcon

αβ

δ(3)(pb + Pβ̃ −Pγ)

Epb
+ P o

β̃
− P o

γ + iǫ
Mcon

βγ
∗

and corresponding 3-body Lippmann-Schwinger-type equation

Tα,fd(Efd) = Uα,fd(Efd) +
∑

γ
Uαγ(Efd)

1

Efd − Eγ + iǫ
Tγ,fd(Efd),



CONCLUSION:

[I.] From the beginning 3D time-ordered equation are

necessary intermediate step between the 4D Bethe-

Salpeter equations and the real 3D observables (S-

matrix, amplitudes and corresponding cross sections,

unitarity conditions in the Fock space, causality etc

are given in 3D form).

Therefore one can not suppose, that 4D equations

contain MORE information as the 3D equations in the

old perturbation theory.

[II.] The considered 3D equations allows to avoid the

principal ambiguities and approximations of other rel-

ativistic field theoretical formulations:

(A) These equations require as INPUT one-variable

phenomenological theoretical vertices.

(B) These equations are free from the 3D ambigu-

ities of the quasiopotential reductions of the Bethe-

Salpeter equations.

(C) Suggested equations have the same compact form

within formulations with and without quark degrees of

freedom

(D) Suggested equations are convenient for the nu-

merical calculations because they have form of the well

known Schrödinger or Lippmann-Schwinger equations

with well known analytical properties and the solution

procedure.

[III.] The suggested three-body equations satisfy au-



tomatically unitarity condition and they are free from

the double-counting problems.

(A) Suggested three-body equations presents the gen-

eral recipe of construction of the complete set of the

three-body forces.

(B) These equation have the most compact and con-

venient form.


