Centrality determination for the MPD@NICA

M.Golubeva, F.Guber, A.Ivashkin, A.Kurepin, INR, Moscow

A.Litvinenko, E.Litvinenko, A.Isupov, I.Migulina, V.Peresedov, JINR, Dubna

M.Baznat, K.K.Gudima, Institute of Applied Physics, Academy of Science of Moldova, Moldova

A.Litvinenko, litvin@moonhe.jinr.ru

A.Litvinenko

Outline

Introduction
 Some definitions
 Spectators
 UrQMD generator
 LAQGSM generator
 Conclusions

A.Litvinenko

NICA

A.Litvinenko

MPD

A.Litvinenko

Nuclear-Nuclear collisions

Quasi-Classical picture
b - not observable
observables

A.Litvinenko

The centrality classification

Geometrical cross section

Geometrical cross section for the fixed impact parameter

$$\sigma_{geo} = 2\pi \int_{0}^{2R} bdb = \pi (2R)^{2}$$
$$\sigma_{geo}(b) = 2\pi \int_{0}^{b} bdb = \pi b^{2}$$

> Interval of impact parameter values $b = 2 \div 4 \text{ fm}$

Interval given in percents from the geometrical cross section

Centrality $40 \div 50 \%$ corresponds to the region of the impact parameter: $\sigma_{geo}(b_{\min})/\sigma_{geo} = (b_{\min}/2R)^2 = 0.4$ $\sigma_{geo}(b_{\max})/\sigma_{geo} = (b_{\max}/2R)^2 = 0.5$ $b_{\min} = \sqrt{0.4} (2R) = 9.5 \text{ fm}$ $b_{\max} = \sqrt{0.5} (2R) = 10.6 \text{ fm}$

A.Litvinenko

The importance of the centrality classification

A.Litvinenko

The importance of the centrality study

Nuclear Physics A V757, No. 1-2 , p.184,2005

Jet Quenching - nuclear modification factor vs centrality

A.Litvinenko

The centrality determination - the observables:

Nucleon spectators (spectrum)

R.Ammaru et al., Pisma v JETF, V.94, No. 4, p.189, (1989)

Yu.Bayukov et al ., YaF V.35, No. 4, p.960, (1982)

A.Litvinenko

Spectator spectrum

$$E \frac{d\sigma}{d^3 p} = C \bullet exp(-T/T_0) \qquad T_0 = 5 - 10 \text{ M}3B$$
$$E \frac{d\sigma}{d^3 p} = C \bullet exp(-\frac{P_S P_F - m_N^2}{m_N T_0})$$
$$E \frac{d\sigma}{d^3 p} = C \bullet exp(-\frac{(p - p_b)^2}{2\sigma_p^2}) \bullet exp(-\frac{\Theta^2}{2\sigma_\Theta^2})$$
$$\sigma_p = \sqrt{\frac{E_b T_0}{m_N}} = 0.15 - 0.22 \text{ GeV/c}; \quad \sigma_\Theta = \sqrt{\frac{m_N T_0}{p_b^2}} = 0.016 - 0.022$$

A.Litvinenko

ZDC for NICA/MPD (standard geometry)

ZDC consists from the modules $10 \times 10 \times 120 \text{ cm}^3$ (or $5 \times 5 \times 120 \text{ cm}^3$). Each module consists of 60 lead-scintillator sandwiches $10 \times 10 \text{ cm}^2$ with thicknesses 16 and 4mm. Main attention in the technical design was paid to the method of light readout from the scintillator tiles that should provide good efficiency and uniformity of light collection.

A.Litvinenko

Front view of ZDC. The squares size is 5×5 cm \times cm

A.Litvinenko

ZDC@MPD geometrical efficiency

$$\epsilon(ZDC) = N_s(ZDC) / N_s(tot.)$$

A.Litvinenko

Simulation Transport – Geant3 and Geant4, generates UrQMD and LAQGSM framework MpdRoot

A.Litvinenko

Optimistic results with UrQMD

URQMD generator, Sqrt(S)=5 GeV

Total kinetic energy of all nucleons directed to ZDC

A.Litvinenko

Optimistic results with UrQMD

URQMD generator, Sqrt(S)=9 GeV

A.Litvinenko

The accuracy of impact parameter determination for MC with UrQMD

$$N(b) = A \cdot b + C; \Delta N = \sqrt{N}; \quad \delta N = 1/\sqrt{N(b)}$$

$$E(b) = T_b \cdot N(b); \Delta E = T_b \cdot \sqrt{N}; \quad \delta E = 1/\sqrt{N(b)}$$

$$b = \frac{N(b) - C}{A} ; \Delta b = \frac{1}{A}\sqrt{N(b)}; \quad \delta b = \frac{\sqrt{N(b)}}{N(b) - C}$$

$$b = 0 \text{ fm } ; \Delta b = 0.35 \text{ fm}; \quad \delta b =$$

$$E(b) = 114 \text{ GeV}; \Delta E = 20 \text{ GeV}; \quad \delta E = 18\%$$

$$b = 5 \text{ fm } ; \Delta b = 0.67 \text{ fm}; \quad \delta b = 13\%$$

$$E(b) = 392 \text{ GeV}; \Delta E = 38 \text{ GeV}; \quad \delta E = 10\%$$

$$b = 10 \text{ fm } ; \Delta b = 0.87 \text{ fm}; \quad \delta b = 9\%$$

$$E(b) = 673 \text{ GeV}; \Delta E = 49 \text{ GeV}; \quad \delta E = 7\%$$

$$\frac{\Delta E}{E} = \frac{\beta}{\sqrt{E}}; \quad \beta <<150\%$$

A.Litvinenko

But

The NA49 collaboration. Eur. Phys. J., A2, 383, (1998)

A.Litvinenko

But

LAQGSM high-energy event generator

CEM03.01 and LAQGSM03.01 Event Generators for

MCNP6, MCNPX, and MARS15

S. G. Mashnik¹, K. K. Gudima², R. E. Prael¹, A. J. Sierk^{1,} M. I. Baznat², N. V. Mokhov³

¹Los Alamos National Laboratory, Los Alamos, NM, USA ²Academy of Science of Moldova, Chisinau, Moldova ³Fermi National Accelerator Laboratory, Batavia, IL, USA

Taking into account spectator fragments

LAQGSM generator, Sqrt(S)=5 GeV

Total kinetic energy of all nucleons and fragments directed to ZDC

A.Litvinenko

Taking into account spectator fragments

LAQGSM generator, Sqrt(S)=9 GeV

Total kinetic energy of all nucleons and fragments directed to ZDC

A.Litvinenko

SHIELD event generator

A.Litvinenko

LAQGSM, Sqrt(S)=5 GeV

URQMD, Sqrt(S)=5 GeV

Total kinetic energy of all nucleons and fragments directed to ZDC

A.Litvinenko

LAQGSM, Sqrt(S)=5 GeV

URQMD, Sqrt(S)=5 GeV

A.Litvinenko

Spectator Nucleons in Pb+Pb Collisions at 158 A GeV

A.Litvinenko

Experimental data : the deposited energy for different types of spectators in dependence of the centrality

At large impact parameters the most of spectator nucleons are bound in fragments.

-5cm

0

5cm

15cm

21cm

-5cm

A.Litvinenko

5

0 0

2

8

 E_{R} (TeV)

6

10

12

14

VBLHEP JINR

38cm

All nucleons directed to the hole of ZDC (rectangle 10x10cm²)

 $\theta \sim 0.3 \cdot 10^{-3} \operatorname{rad} = 0.3 \operatorname{mrad}$

value centrality	< 60 %	60 - 80 %	> 80 %
N_{ZDC}	71041	22848	4787
N_{hole}	19707	47826	60431
$N_{tot} = N_{ZDC} + N_{hole}$	90748	70674	65218
$arepsilon = N_{hole}/N_{tot}$	22 %	68 %	93 %

A.Litvinenko

Experimental data : the deposited energy for different types of spectators in dependence of the centrality

At large impact parameters the most of spectator nucleons are bound in fragments.

-5cm

0

5cm

15cm

21cm

-5cm

A.Litvinenko

5

0 0

2

8

 E_{R} (TeV)

6

10

12

14

VBLHEP JINR

38cm

The centrality determination: ZDC (energy) + number of charged barrel tracks

A.Litvinenko

Centrality determination in some experiment

PHENIX

A.Litvinenko

Conclusions

- The SHIELD and LAQGSM could be used for NICA/MPD simulations under mpdroot.
- The SHIELD and LAQGSM angular distributions of the spectators differ from URQMD picture.

 The experimental study of the spectator distributions and calorimeter resolution have to be performed on the extracted beam of NUCLOTRON-M at the fixed target.

MAPD - micro pixel avalanche photodiods **G** 60 lead/scintillator sandwiches >lead - 16 mm >scintillator - 4 mm $\frac{\Delta E}{E} = \frac{(67 \pm 12)\%}{\sqrt{E}}$

A.Litvinenko

This work is partially supported by RFBR GRANT No. 10-02-01036-a

A.Litvinenko

A.Litvinenko

Fast evaluations: the movement of spectators at NICA/MPD

$$\mathbf{Y} \underbrace{\mathbf{X}}_{\mathbf{P}_{b}} \begin{bmatrix} \mathbf{x}(z) = \frac{\mathbf{p}_{T}A}{\mathbf{0.3QB}} \sin\left(\frac{\mathbf{0.3QB} \cdot z}{\mathbf{p}_{z}A}\right) \\ \mathbf{y}(z) = \frac{\mathbf{p}_{T}A}{\mathbf{0.3QB}} \cos\left(\frac{\mathbf{0.3QB} \cdot z}{\mathbf{p}_{z}A}\right) \cdot \frac{\mathbf{p}_{T}A}{\mathbf{0.3QB}} \end{bmatrix}$$
$$\left[\mathbf{p}(\mathbf{B}, \mathbf{z}) = \sqrt{\mathbf{x}^{2} + \mathbf{y}^{2}} = \frac{\mathbf{p}_{T}A}{\mathbf{0.3QB}} \sqrt{2\left(1 - \cos\left(\frac{\mathbf{0.3QB} \cdot z}{\mathbf{p}_{z}A}\right)\right)} \right]$$
$$\left[\left(\frac{\mathbf{0.3QB} \cdot z}{\mathbf{p}_{z}A}\right) \le \mathbf{0.2} \Rightarrow \rho(B, z) = \frac{p_{T}}{p_{z}} z; \Delta \phi = \frac{1}{2} \left(\frac{\mathbf{0.3QB} \cdot z}{\mathbf{p}_{z}A}\right) \right]$$
$$\frac{\mathbf{The \ conclusion:}}{\mathbf{The \ conclusion:}}$$

 \checkmark it will only slightly changes the azimutal angles

A.Litvinenko

VBLHEP JINR

 $\Delta \phi \leq 6^{\circ}$

A.Litvinenko

A.Litvinenko

VBLHEP JINR

The RHIC Zero Degree Calorimeters

A.Litvinenko

Properties of MAPDs

New generation of micropixel APD produced in Singapore by Zecotek

- -Active area: 3x3 mm²
- Number of pixel: up to 40000/mm²
- Gain ~ few x 10^4
- -Voltage ~65 V
- Dark current ~50 nA
- High stability

Centrality classification

NA49 classification		N _{part} classification		b classification		
window	centrality	$< N_{part} >$	N _{part} range	$< N_{part} >$	b range in fm	$< N_{part} >$
1	0-5%	362 ± 12	320-416	358	0-3.1	364
2	5-14%	304 ± 16	230-320	268	3.1-5.2	289
3	14-23%	241 ± 16	175-230	200	5.2-6.7	220
4	23-31%	188 ± 16	145-175	158	6.7-7.8	171
5	31-48%	130 ± 14	90-145	116	7.8-9.7	117
6	48-100%	72 ± 8	0-90	35	9.7-14	35

C.E. Aguilar et al., Brazilian Journal of Physics, V.34, No.1, p.319, (2004)

A.Litvinenko

A.Litvinenko

VBLHEP JINR

A.Litvinenko

Calorimeter No.1

A.Litvinenko

Calorimeter No.1

A.Litvinenko

Linearity

$$\chi^2 = \frac{1}{N-1} \sum_{i=1,j=1,k=1}^{N_i,N_j,N_k} \left(\frac{T_{i,j,k} - \alpha \cdot \langle \Delta E_{Sc} \rangle_{i,j,k}}{\alpha \cdot \sigma (\Delta E_{Sc})_{i,j,k}} \right)^2$$

 $T_{i,j,k} = i \cdot T_i(p = 3~GeV/c) + j \cdot T_j(p = 4~GeV/c) + k \cdot T_k(p = 5~GeV/c)$

Resolution

$$\frac{\sigma}{T} = \frac{\beta}{\sqrt{T}} + \gamma$$

Longitudinal distribution

$$\Delta E_{Sc} = A\sqrt{L} \cdot exp(-\delta L/\lambda_{int})$$

A.Litvinenko

A.Litvinenko

CONCLUSION

N⁰	структура	число	поперечный	поверхностная	полная	длина
	ячейки	ячеек	размер	плотность	длина	В
	по пучку (мм)	шт.	mm x mm	g/cm^2	L (mm)	L/λ_{int}
1.	20 Fe + 5 Sc	40	400 x 400	649.6	1000	5
2.	20 Pb + 5 Sc	40	400 x 400	928	1000	4.9
3.	10 Pb + 2.5 Sc	80	400 x 400	928	1000	4.9
4.	16 Pb + 4 Sc	60	400 x 400	1113.6	1200	5.9
5.	5 W + 5 Sc	120	400 x 400	1218	1200	7

					разрешение
N⁰	χ^2	α	β	γ	для протона
					p = 4 GeV/c
1.	0.6	26.0 ± 0.1	$65 \pm 11 \%$	$0.0 \pm 0.9 \%$	36 %
2.	0.2	33.2 ± 0.11	$71.6 \pm 12.8 \%$	$.12$ \pm 0.95 %	40.4 %
3.	0.3	32.4 ± 0.1	$61.8 \pm 11.0 \%$	$0.1 \pm 0.8 \%$	34.8 %
4.	0.2	32.6 ± 0.1	$67.4 \pm 12.0 \%$	$0.1 \pm 0.9 \%$	37.9 %
5.	0.6	13.82 ± 0.06	$51.8 \pm 9.3 \%$	$0.0 \pm 0.7 \%$	29.0 %

A.Litvinenko

Пространственное разрешение

A.Litvinenko

ZDC

A.Litvinenko

ZDC + Multiplicity

1000 Min Bias

A.Litvinenko

ZDC + Multiplicity

1000 Min Bias

A.Litvinenko

A.Litvinenko

ZDC + BBC

VBLHEP JINR

A.Litvinenko

VCAL (ZDC)

A.Litvinenko