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We consider creation of some hadronic state by two reggeized gluons emitted by

colliding hadrons (protons, antiprotons), accompanied by two jets resulting from in-

teraction of initial hadrons with colored reggeized gluons. Differential cross sections

of creation of a single gluon, quark-anti quark pair and pair of real gluons presented.

Describing the creation of jets in fragmentation regions we use some anzatz, based

on gauge invariance, which relate the probability of jet production with general-

ized parton distribution and in particular with gluon density in proton. Differential

distribution are presented.

For completeness we put the similar distributions for QED processes of lepton pair

creation, production of pseudo-scalar and scalar particles through the two virtual

photon mechanism in high energy protons collisions. The relevant cross sections in

spite of smallness of coupling constant are enhanced by Wezsaecker-Williams factors

compared with jet production ones.
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I. INTRODUCTION

In the early seventies of last century the pro-

cesses of creation of some set of particles where

intensively studied [1]. For the case when the

lepton pair created outside the fragmentation re-

gions of protons the cross section of process (see

Fig. 1 a)

p(p1) + p(p̄)(p2) → p(p′1) + p(p̄)(p′2) +

µ+(q+) + µ−(q−), (1)

have a form (phase volume is defined in Appendix

A)

dσpp̄→qq̄pp̄ =
2α4

π

d2q1d
2q2d

2k1dx

π3

dβ1

β1
×

~q2
1
~k2

(~q2
1 + M2β2

1)2(~q2
2 + M2α2)2

· F ; (2)
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where M is proton mass,

sα =
−c

β1x(1− x)
, 0 < x =

β2

β1
< 1; β1 << 1, (3)

c = m2 + ~q2
2 + ~q2

1x + 2~q1~q2x, (4)

c1 = m2 + (~k2 − ~q2)
2 + ~q2

1x + 2~q1(~q2 − ~k2)x; (5)

~q2
1~q

2
2F =

~q2
2~q

2
1

cc1
− xx̄

c2c2
1

[(~q2
1 + 2~q1~q2)(~q

2
2 − 2~k2~q2) +

2(~q2~q1)(m
2 + ~k2

2)]
2. (6)

Here m is lepton mass, x1 = 1 − β1 ≈ 1, −~q1

is the energy fraction of the scattered proton and

it’s momentum, transversal to the initial proton

direction ~p1 (center of mass of initial particles im-

plied). 1 + α ≈ 1, ~q2-the similar quantities for

the scattered proton(anti-proton). xβ1 +
µ2+~k2

1
sβ1x

,

−~k1 and (1−x)β1 +
µ2+~k2

2
sβ1(1−x)

, ~k2 = ~q1−~q2−~k1-

corresponding quantities for negative and posi-

tive charged leptons from the pair created, m
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Figure 1: Feynman diagram

is the mass of the created particle. For two-

photon processes with creation of pseudo-scalar

and scalar particle we use the corresponding sub-

process γ(q1, µ) + γ(q2, ν) → P (S) (see Fig.

1,b,c) with matrix elements described in terms

of triangle Feynman loop diagrams with quarks

as an internal fermions:

MγγP =
2αNPgp

πmq
(q1e1q2e2)IP , (q1e1q2e2) =

εαβγσq1αe1βq2γe2σ;

MγγS =
2αNSgS

πmq
[q1q2)(e1e2)− (e1q2)(e2q1)]IS, (7)
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where e1,2(q1,2) - the polarization vectors of pho-

tons, NP,S - color factors

NP = Nc(
4

9
− 1

9
) = 1;

NS = Nc(
4

9
+

1

9
) =

5

3
. (8)

Performing the loop momentum integration we

obtain

IP,S =

1∫

0

dx

1∫

0

ydy

dP,S
(1, 1− 4y2x(1− x)),

dP,S = 1− y2x(1− x)
M2

P,S

m2
q
−

y(1− y)

[
x

q2
1

m2
q

+ (1− x)
q2
2

m2
q

]
, (9)

MP,S,mq-masses of produced particles and

quark mass. We can use the Goldberger-Treiman

relation gP/mq = 1/Fπ, with Fπ = 93MeV is

decay constant of charged pion; and the similar
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relation gS/mq = 1/Fσ, Fσ ∼ Fπ.

When inserting these matrix elements to the

matrix element of process 2 → 3 the combination

is used MγγF (e1 → p1, e2 → p2)/s = mγγF ,

we obtain

mγγP =
αNP

πFπ
[~q1, ~q2]zIP ;

mγγS =
αNS

πFσ
(~q1, ~q2)IS, (10)

where we consider the four-momenta of virtual

photons to be essentially transversal two- com-

ponent euclidean vectors ~p1~q1,2 = 0; q2
1,2 =

−~q2
1,2 < 0.

Cross sections of processes of single meson pro-
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duction in the pionization region are

dσpp→ppP =
2α4

π

dβ1

β1
dN1dN2CP sin2 θ;

dσpp→ppS =
2α4

π

dβ1

β1
dN1dN2CS cos2 θ, (11)

with θ - azimuthal angle between two-

dimensional vectors ~q1, ~q2,

CP =

∣∣∣∣
NP

Fπ
IP

∣∣∣∣
2

; CS =

∣∣∣∣
NS

Fσ
IS

∣∣∣∣
2

; (12)

and Weizsaecker-Williams (WW) enhanced fac-

tors

dN1 =
~q2
1d

2~q1

(~q2
1 + m2β2

1)2
,

dN2 =
~q2
2d

2~q2

(~q2
2 + m2α2

2)
2
,

sα2β1 = M2
P,S + (~q1 + ~q2)

2. (13)

We use the expression of the squared 4-vectors of
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momenta transferred to lepton pair:

q2
1 ≈ −(~q2

1 + m2
pβ

2
1);

q2
2 ≈ −(~q2

2 + m2
pα

2
2),mp = m. (14)

These factors being integrated, produce the

”large logarithmic” factors

Q2∫

0

dN1 = ln
q2

m2β2
1

− 1,m2 >> Q2 >> s.(15)

Performing the numerical integrations Ver-

masseren formula for matrix element of conver-

sion of two (virtual) photons to real lepton pair

[2]

γ(e1, q1) + γ(e2, q2) → µ−(q−) + µ+(q+) (16)
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was found

ū(q−)

{
ê1

k̂1 + m

k2
1 −m2

ê2 + ê2
k̂2 + m

k2
2 −m2

ê1

}
v(q+) =

(q1e1αµ)(q2e2βµ)

(k2
1 −m2)(k2

2 −m2)
ū(q1)×

[
γβk̂1γ

α + γαk̂2γ
β
]
v(q+), (17)

which reveal the explicit property of gauge invari-

ance.

Considering the processes with creation of single

gluon and pairs of gluons and quark-anti-quark

pairs, the exchange by the reggeized gluons be-

tween protons becomes relevant. Two phenom-

ena compared with the QED case appears. First

-the absence of WW factors. This statement fol-

lows from the gauge invariance of vertex describ-

ing the conversion of proton to jet after emission
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of a reggeized gluon

q
µ
1 < j1|Ja

µ|p(p1) >= (α1p2 + q1⊥)µJa
µ = 0.(18)

Quantity Na = p
µ
2Ja

µ/s which enters in matrix

element of the whole process being squared and

summed on final states of the jet with fixed in-

variant mass square 9definition of phase volume

is given in Appendix A):
∫ ∑

NaNa1∗dγ1 = |(~q1
~Ja)(~q1

~Ja1)

sα1
|2dγ1 =

~q2
1

M2
1

δaa1Φ1(~q
2
1)dM2

1F (β1),

Φ1(~q
2
1) =

M2
1

(M2
1 + ~q2

1)
2
, (19)

with M2
1 is the invariant mass squared of the jet

produced by proton and

F (x) = xg(x), (20)

is the gluon density into proton F (0) 6= 0. Here
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we use some interpretation of the General Parton

Distribution (GPD) hypothesis [7].

We will see below that using the gauge invari-

ance of matrix element of subprocess RR → F ,

(R denotes the reggeized gluon) an additional

factor ~q2
1~q

2
2 in matrix element squared appears.

So the factor 1/(q2
1q

2
2)

2 is canceled. So the ef-

fect of WW enhancement disappears in processes

pp → 3jet.

The second effect is the appearance of gluon

reggeization factor R in expression for the cross

section

R =

(
S1

s0

)2(αg(q
2
1)−1)(S2

s0

)2(αg(q
2
2)−1)

, (21)

where αg(q
2
1) = 1 − αs~q

2
1/(πq2

0)- is the Regge

trajectory of gluon, q2
0 ∼ 1Gev2 αg(0) = 0. The
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partial invariant mass squared are defined as

S1 = (p1 − q2)
2 ≈ −sα2; S2 = (q1 + p2)

2 ≈ sβ1,

S1S2 = s(M2
F + (~q1 − ~q2)

2). (22)

Scale factor s0 ≈ 1GeV 2 is in principle one of

fitting parameters.

Effect of gluon reggeization R(~q2) is illustrated

in Fig.6.

II. PROCESS pp → jjg

Vertex function which describe interaction of

two reggeized gluon with ordinary gluon (see Fig.

2a)

R(−, q1, a) + R(+,−q2, b) → g(µ, q2 − q1, c),(23)

have a form [5]

mRR→g = 2gfabcCµecµ (24)
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with fabc-structure constants of color SU(N)

group, ecµ is the polarization vector of a real

gluon and vector Cµ have a form

Cµ = (q1 + q2)µ − (q−2 +
~q2
2

q+
1

)(n+)µ −

(q+
1 +

~q2
1

q−2
)(n−)µ. (25)

Note that vector C obey the gauge condition

Cµ(q2−q1)
µ = 0. Using the on mass shell condi-

tion of gluon s1 = (q2−q1)
2 = q−2 q+

1 − (~q2−~q1)
2

and q1 = q+
1 (n−)/2+ q1⊥, q2 = q−2 (n+)/2+ q2⊥

we obtain

|C2
µ| =

4~q2
1~q

2
2

(~q2 − ~q1)2
. (26)

Keeping in mind the further conversion of gluon

to the gluon jet with invariant mass squared M2,

we obtain the cross section of process pp →
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Figure 2: Feynman diagram

j1j2jg the expression given in Appendix B with

Φg =
16N(N2 − 1)

M2 + (~q2 − ~q1)2
. (27)

The quantity

Ig =
M1M2

16N(N2 − 1)

∫
d2~q1d

2~q2

π2
Φ1(~q

2
1)Φ2(~q

2
2)Φ

g,

Φi(~q
2
i ) =

M2
i

(~q2
i + M2

i )2
, (28)

for some values M2
1 ,M2

2 ,M2 is presented in

Fig. 3.

III. PROCESS pp → jjgg

The quantity Φgg entering the cross section (see

Appendix) have a form

Φgg =
1

~q1
2~q2

2

∑
|MRRPP |2, (29)



15

1 2 3 4 5 6 7 8 9 10

10

100

I g

M, GeV

Figure 3: Value Ig as a function of produced gluon jet mass M in case of M1 = M2 = 1 GeV.

with MRRPP is the effective vertex describing

the conversion of two reggeized gluons to two real

gluons (see Fig. 2 b)

R(−, c, q1) + R(+, d,−q2) →
g(ν1, d1, k1) + g(ν2, d2, k2). (30)
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It was obtained [3–6]

∑
|MRRPP |2 = G1(a

ν1ν2(k1, k2))
2 +

G2Ωσσ′(k1)Ωρρ′(k2)a
σρ(k1, k2)a

ρ′σ′(k2, k1) +

(k1 ↔ k2), (31)

with

G1 = (fd1d2rfcdr)
2 = N2(N2 − 1);

G2 = fd1d2rfcdrfd2crfd1dr = −1

2
N2(N2 − 1), (32)

projection operators

Ωσσ′(k) = −g⊥σσ′ −
2

~k2
kσ⊥kσ′⊥, (33)

and

aν1ν2(k1, k2) = 4

[
1

t
q
ν1
⊥ q

ν2
⊥ −

1

χ
q
ν1
⊥ (k1 −

x

x̄
k2)

ν2 +

1

χ
q
ν2
⊥ (k2 −

ȳ

y
k2)

ν1 − x~q2
2

χ~k2
1

k
ν1
1 k

ν2
1 − ȳ~q2

1

χ~k2
2

k
ν1
2 k

ν2
2 −

1

χ
(1 +

tx

x̄~k2
1

)k
ν1
1 k

ν2
2 +

1

χ
k
ν1
1 k

ν2
2 − 2Dg

ν1ν2
⊥

]
,(34)
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with

D = 1 +
t

χ
+

x̄~k2
1

tx
+

1

χ
[
x̄

x
~k2

1 −
x

x̄
~k2

2] +
~q2
1

χ
ȳ +

~q2
2

χ
x.

(35)

We use here the notations

ki = αip2 + βip1 + qi⊥, sαiβi = ~k2
i ;

q = q1 − k1 = q2 + k2; t = q2; χ = (k1 + k2)
2;

x =
β1

β1 + β2
, y =

α1

α1 + α2
. (36)

Using the different (but equivalent) forms for t, χ

t = −(~q1 − ~k1)
2 − x̄

x
~k2

1; χ =
1

xx̄
(x̄~k1 − x~k2)

2;

t = −(~q2 + ~k2)
2 − y

ȳ
~k2

2; χ =
1

yȳ
(ȳ~k1 − y~k2)

2,(37)

one can be convinced that the gauge conditions

D|~q1 → 0 = D|~q2 → 0 = 0;

aν1ν2(k1, k2)|~q1 → 0 = 0 (38)
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are fulfilled. Cross section of process pp →
j1j2gg is given in Appendix, with

Φgg =
1

~q2
1~q

2
2

∑
|MRRPP |2. (39)

Due to gauge properties of aν1ν2, the quantity

Φgg is finite at ~q1, ~q2 → 0 which provide the con-

vergence of the quantity

Igg = M2
1M2

2

∫
d2~q1d

2~q2

π2
Φ1(~q

2
1)Φ2(~q

2
2)Φ

gg.(40)

This quantity is presented in Fig. 4 for some val-

ues of M1
1 ,M2

2 and gluon jets characteristics.

IV. PROCESS pp → jjqq̄

Matrix element of subprocess of conversion of

two reggeized gluons to the quark-anti-quark pair

(see Fig. 2c)

R(−, a, q1) + R(+, b,−q2) → q(k1) + q̄(k2),(41)
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Figure 4: Value Igg as a function of transverse momentum modulus |~k1| of one of the gluon in the

produced gluon pair in case of M1 = M2 = 1 GeV, x = 0.2 and y = 0.3.

is described by two different mechanisms: direct

interaction and production of gluon with the sub-

sequent it’s conversion to the quark pair

Mqq̄ = ū(k1)[Atatb −Btbta]v(k2), (42)
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with ta-generator of color SU(N) group in

fermion representation,

[ta, tb] = ifabctc, a, b, c = 1, 2, ..., N2 − 1,

T rta = 0, T rI = N ; Trtatb =
1

2
δab,

∑
(t2a)2 = I

N2 − 1

2N
;
∑

Trtatbtatb = −N2 − 1

4N
;

∑
Trtatatbtb =

(N2 − 1)2

4N
, (43)

and [6]

A = γ− q̂1 − k̂1 −m

(q1 − k1)2 −m2
γ+ − 2

q2
Ĉ;

B = γ+ q̂1 − k̂2 −m

(q1 − k2)2 −m2
γ− − 2

q2
Ĉ,

q = k1 + k2, (44)

with m-quark mass and 4-vector Cµ describing

the conversion of two reggeized gluons to the or-

dinary gluon was given above. The gauge proper-

ties of Mqq̄, i.e. turning it to zero in limit ~q1 → 0
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as well as in the limit ~q1 → 0 can be seen us-

ing the expressions (we use Dirac equations for

quarks)

A =
1

−~q2
1 − k−1 q+

(γ−q̂⊥1 − 2k−1 )γ+ − 2

(k1 + k2)2
Ĉ;

A =
1

−~q2
2 − k+

2 q−
γ−(q̂⊥2 γ− + 2k+

2 )− 2

(k1 + k2)2
Ĉ

(45)

and

B =
1

−~q2
2 − k+

1 q+
(γ+q̂⊥2 + 2k+

1 )γ− − 2

(k1 + k2)2
Ĉ;

B =
1

−~q2
2 − k+

1 q−
γ+(q̂⊥1 γ− − 2k−2 )− 2

(k1 + k2)2
Ĉ;

(46)

Ĉ = 2q̂⊥1 −
~q2
1

q−2
γ− +

1

q+
1

[q2 + ~q2
1 − 2~q1~q2]γ

+;

Ĉ = 2q̂⊥2 −
~q2
2

q+
1

γ+ +
1

q−2
[q2 + ~q2

2 − 2~q1~q2]γ
−.(47)
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These properties provide convergence of the rele-

vant integrals on ~q1,2. We obtain

~q2
1~q

2
2Φ

qq̄ = 4[N1(SA + SB)− 2N2SAB], (48)

with

SA =
1

4
Sp(k̂1 + m)A(k̂2 −m)Ã;

SB =
1

4
Sp(k̂1 + m)B(k̂2 −m)B̃;

SAB =
1

4
Sp(k̂1 + m)A(k̂2 −m)B̃. (49)

Note that the value Φqq̄ is finite in both limits

~q1 → 0 and ~q2 → 0. The expression for cross sec-

tion is given in Appendix with Φqq̄ given above.

Result of numerical integration of the quantity

Iqq̄ =

∫
d2~q1d

2~q2

π2
Φ1(~q

2
1)Φ2(~q

2
2)Φ

qq̄ (50)

is presented in Fig.5.
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V. DISCUSSION

In paper [8] consideration similar to ones given

in section IV was done to investigate heavy quark

production. But, unfortunately the effect of

Regge factor R was not taken into account.

Open charm and b quark production was con-

sidered in papers [9]. Regge-factors as well was

not taken into account. But it seems to be rather

important since intersept of quark Regge trajec-

tory at zero transfer momentum less than unity

αq(0) = 1/2.

Effect of reggeization can be approximated as

R ≈
(

sM2
F

s2
0

)−2αs~q
2/(πq2

0)

. (51)

For typical values s0 ∼ M2
F ∼ q2

0 ≈ 1GeV 2 this

factor is presented in Fig.6.
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Anzatz for fragmentation function of protons

used above is in agreement with the commonly

used [7] in terms of unintegrated gluon distribu-

tion

F (x) = xg(x) =

∞∫

0

d~k2

~k2
θ(~q2 − ~k2)F(x,~k) →

F (x)

∫
M2

1dM2
1

(M2
1 + ~q2

1)
2

d2q1

π

∫
M2

2dM2
2

(M2
2 + ~q2

2)
2

d2q2

π
.(52)

Besides it provide the correct ~q2 dependence of

proton inelastic form factors.

We underline that in processes with final state

F = qq̄; gg two particles with open color as well

must be converted to jets. We imply that these

jets belong to the same boost factor dβ1/β1. So

there is no rapidity gap between these jets.

It is interesting to generalize the QED result
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for process of Higgs boson production through

two reggeized gluons mechanism. As well as

color trace of triangle quark Feynman diagram

give Trtatb = δab/2, the color structures of

protons jets become to be connected. A a re-

sult and additional factor compared with QED

case (3/2)2(N2 − 1). Keeping in mind that the

main contribution arise from top quark in fermion

loop and that the mass of the intermediate state

with two top quarks exceed Higgs boson mass

MH < 2Mt we can estimate the corresponding

integral on Feynman parameters as

IS → IH ≈
1∫

0

dx

1∫

0

y(1− 4y2x(1− x)) =
1

3
.

(53)
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Figure 5: The cross section of dependence from pT

As a result we have

dσpp→jjH = σH(N2 − 1)R
dβ1

β1
,

σH =
α4

s

2π
(
gtth

Mt
)2. (54)

Estimation in frames Standard Model leads

gttH ∼
√

2
√

2GFmt ∼ 1. The quantity σH

is rather large σH ∼ 6µb. Gluon reggeization



27

factor R can reduce the Higgs meson production

cross section in a middle by one order of magni-

tude. This factor is presented in Fig. 4.

For process of a single gluonic jet production

pp → jpjpjg the transverse momentum of the

created gluon must be of order of momenta tran-

ferred to the nucleons ~q1 = ~q2 + ~qg, so the quan-

tity of order of invariant mass of jets created by

the nucleons |~q1| ∼= |~q2| ∼ |~qg| ∼ 1GeV/c.

For the case of large values of momenta |~q| the

reggeization factor suppression take place R ∼
(si/s0)

−(αs/π)(~q2
i /q

2
0) << 1, q2

0 ∼ 1Gev2/c2,

~q2
i /q

2
0 >> 1.

The importance of reggeization factor F (z) =
∞∫
0

dx
(x+1)2

z−λx is illustrated in Fig.3, for λ =

−2αs
π ≈ −0.2, z = s

s0
.
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VI. APPENDIX A. SUDAKOV’S

PARAMETRIZATION. PHASE VOLUME

Here we use Sudakov parametrization of four-

vectors of the problem:

qi = αip̃2 + βip̃1 + qi⊥, i = 1, 2. (55)

with light-like 4-vectors p̃i builded from pi.

First we rearrange the phase volume of process

pp → ppF with some state F in terms of Su-

dakov variables. Starting from the standard ex-
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pression

dΓ2→2F = (2π)4 · δ4(p1 + p2 − p′1 − p′2 −∑

F

qi)
d3p′1

2ε′1(2π)3
d3p′2

2ε′2(2π)3

∏

F

d3qi

2εi(2π)3
. (56)

Introducing two auxiliary variables and two rele-

vant δ functions∫
d4q1d

4q2δ
4(p1 − q1 − p′1)δ4(q2 + p2 − p′2) = 1,

(57)

using the relation

d3qi

2εi
= d4qiδ(q2

i −m2
i ), (58)

and besides

qi = αip2 + βip1 + qi⊥, q2
i = sαiβi − ~q2

i ,

p2
1 = p2

2 = 0; qi⊥p1 = qi⊥p2 = 0; q2
i⊥ = −~q2

i < 0,

d4qi =
s

2
dαdβd2~qi, (59)

and using the δ4 functions to perform the inte-

gration on the momenta of the scattered protons
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p′i, p′2,
1

(2π)6
dsα1

2
dβ1

dsβ2

2
dα2π

2d
2~q1

π

d2~q2

π
δ(−sα1 − ~q2

1)

δ(sβ2 − ~q2
2)dΓF , (60)

we put it as

dΓ2→2F =
π2

4s(2π)6
dβ1

β1
dM2d

2~q1

π

d2~q1

π
dΓF ,

dΓF = (2π)4δ4(q1 − q2 −
∑

F

qi)
∏

F

d3qi

2εi(2π)3
,

(61)

with M2 = (q1 − q2)
2 = −sα2β1 − (~q1 − ~q2)

2-

invariant mass squared of the state F .

For the phase volume of 3jet production we

have

dΓpp→j1j2F = (2π)−6π
2

4s

dβ1

β1
dM2

1dγ1dM2
2dγ2 ×

d2~q1

π

d2~q2

π
dΓFdM2, (62)
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with

dγ1 = (2π)3δ4(p1 − q1 −
∑

j1

qi)
∏

j1

d3qi

2εi(2π)3
;

dγ2 = (2π)3δ4(p2 + q2 −
∑

j2

qi)
∏

j2

d3qi

2εi(2π)3
. (63)

For the case of subprocess γ(q1)+γ(−q2) → p(k)

with k2 = M2 we have
∫

dM2dΓ1 =

∫
dM2 1

(2π)3
d4kδ(k2 −M2)

(2π)4δ4(q1 − q2 − k) = 2π. (64)

Consider now the subprocess γ(q1) + γ(−q2) →
a(k1)+b(k2), (q1−q2)

2 = (k1+k2)
2 = M2, k2

1 =

m2
1, k

2
2 = m2

2. Using Sudakov representation

q1 = β1 + q1⊥, q2 = α2 + q2⊥,

ki = α(i)p2 + β(i)p1 + ki⊥, (65)
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we have∫
dM2dΓ2 =

∫
dM2(2π)4

(2π)6
d4k1δ(k2

1 −m2
1)

d4k2δ(k2
2 −m2

2)δ
4(q1 − q2 − k). (66)

Using dM2 = d(sα2β1, and introduce the nota-

tions

x = β(1)/β1, 1− x = x = x̄ = β(2)/β1;

y = α(1)/(−α2), 1− y = α(2)/(−α2),

we can write down this quantity in two equivalent

forms∫
dM2dΓ2 =

∫
d2~k1dx

2(2π)2xx̄
; 0 < x < 1;

∫
dM2dΓ2 =

∫
d2~k1dy

2(2π)2yȳ
; 0 < y < 1. (67)

We put here the typical invariants

2q1k1 =
~k2

1 + m2
1

x
− 2~q1

~k1;

2q2k1 =
~k2

1 + m2
1

y
− 2~q2

~k1. (68)
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VII. APPENDIX B. MATRIX ELEMENT AND CROSS

SECTION OF PERIPHERICAL PROCESSES

Main contribution to the matrix element of pro-

cesses 2 → 3 in peripherical kinematics

s = 2p1p2 >> |q2
1| ∼ |q2

2| ∼ M2
1 ∼ M2

2 ∼ M2, (69)

arise from Feynman diagrams with photon (glu-

ons) state in the the scattering channel. It can be

written in factorized form. For the case of QED

processes

P (p1) + p(p2) → p(p′1) + p(p′2) + F (q1, q2, XF )

we have

M2→2F =
(4πα)2

q2
1q

2
2

< p(p′1)|Jµ|p(p1) >

< p(p′2)|Jν|p(p2 > gµµ1gνν1mµ1ν1(q1, q2; F ).(70)

Using the gauge invariance we can choice the Gri-

bov’s form of presentation of the photon Green
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function

gµµ1 = g
µµ1
⊥ +

2

s
[p

µ
2p

µ1
1 + p

µ1
2 p

µ
1 ]. (71)

Omitting the terms leading to the contribution of

order m2/s compared to ones with the contribu-

tion to the cross section of order of unity one can

replace

gµµ1 → 2

s
p
µ
2p

µ1
1 ; gνν1 → 2

s
p
µ
1p

ν1
2 . (72)

So matrix element of QED process have a form

MQED =
(4πα)2

q2
1q

2
2

(
2

s

)2

sN1sN2
s

4
m+−(q1, q2, F ),(73)

with

N1 =
1

s
ū(p′1)p̂2u(p1); N2 =

1

s
ū(p′2)p̂1u(p2).(74)

and

m+− = n+
µn−ν mµν, n+

µ =
2p2√

s
; n−µ =

2p1√
s
. (75)
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and mµν is the matrix element of subprocess.

Summed on spin states matrix element square is

∑
|MQED|2 = 4

(4πα)4

(q2
1q

2
2)

2
s2

∑
|m+−|2. (76)

For the case of 3 jets production we obtain

MQCD =
(4παs)

2

q2
1q

2
2

sNaNbm+−
ab , (77)

with quantities Na,b specified above.

Cross section of process pp → j1j2F is defined

as

dσ =
1

8s

∑
|MQCD|2dΓ3j.

We use the anzatz for fragmentation region of

proton with momentum p1:∫
dγ1N

1
aN1∗

a1
=

~q2
1

M2
1

δaa1Φ1F (β1),

Φ1 =
M2

1

(M2
1 + ~q2

1)
2
, (78)
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and similar expression for proton with momen-

tum p2.

Cross section of process of single gluon creation

accompanied by two jets pp → jjgcan be written

in form

dσjjg =
α3

s

16M2
1M2

2

Φ1dM2
1Φ2dM2

2Φg ×

dβ1

β1

d2~q1

π

d2~q2

π
F (β1)F (α2)R, (79)

with

Φg =
∑ (fabcCµ)2

~q2
1~q

2
2

. (80)

Explicit expression of Φg is given above.

Cross section of production of pair of colored

particles a1, a2 (gg or qq̄) has a form

dσjja1a2 =
α4

s

8M2
1M2

2

Φa1a2Φ1dM2
1Φ2dM2

2 ×

dβ1

β1

d2~q1

π

d2~q2

π
F (β1)F (α2)RdM2dΓ2. (81)
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Explicit expressions for Φa1a2 are given above for

the cases qq̄ and gg.

[1] V. N Baier, V. S. Fadin, V. A. Khoze and V. M. Kuraev, Phys. Rep.

v 78 N3 (1981),,293. V. M. Budnev, I. F. Ginzburg, G. V. Meledin

and V. G. Serbo, Phys. Rep. v. 15c(1975), 181.

[2] J. A. M. Vermasseren, Nucl. Phys. B 229(1983), 347.

[3] L. N. Lipatov, Nucl. Phys. B 542(1995),369

[4] V. S. Fadin, M. I. Kotski and L. N. Lipatov, hep-

ph/9704267v2(1997).

[5] E. N. Antonov, I. O. Cherednikov, E. A. Kuraev, L. N. Lipatov,

Nucl. Phys. B 721(2005), 111.

[6] L. Lipatov and V. Fadin, Yad. Fiz. v 50 (1989),1141.; Nucl. Phys.

B477 (1996),767.

[7] M. A. Kimber, A. D. Martin and M. G. Ryskin, Phys. Rev. D 63,

114027 (2001) [arXiv:hep-ph/0101348].

[8] P. Hagler, R. Kirschner, A. Schafer, L. Szymanowski and

O. Teryaev, Phys. Rev. D 62, 071502 (2000) [arXiv:hep-

ph/0002077].

[9] B. A, Kniehl, A. V. Shipilova and V. A. Saleev, Phys. Rev. D 79,

034007 (2009); hep-ph/1003.0346v2 (2010).


