PERIPHERAL DISSOCIATION OF RELATIVISTIC ${ }^{9} \mathrm{C}$ NUCLEI IN NUCLEAR TRACK EMULSION

D. Krivenkov JINR, Dubna

XX International Baldin Seminar on High Energy Problems
Dubna, Russia, October 4-9, 2010

Relative Scales

Human hair $\sim 50 \mu m$

Relativistic nucleus track ~1 μm

Atom $\sim 10^{-4} \mu m$

Nucleus $\sim 10^{-9} \mu m$

A photograph of an event interpreted as the beta decay of ${ }^{9} \mathrm{C}$. The ${ }^{9} \mathrm{C}$ nucleus (track F) was produced in star (A) and disintegrated into a proton, two alpha particles, and a positron.

M. S. Swami, J. Schneps, and W. F. Fry Department of Physics, University of Wisconsin, Madison, Wisconsin (Received June 29, 1956)

Structure Peculiarities of ${ }^{9} \mathrm{C}$ Nuclei

$\frac{1.4375}{{ }^{7} \mathrm{Be}+2 \mathrm{p}}$

Fragment separation scheme: beam line layout

On October, 21st, 2006 NUCLOTRON JINR

 The Beam ${ }^{12} \mathrm{C} \rightarrow{ }^{9} \mathrm{C}$ Momentum 2 A GeV/c
Amplitude Spectrum from a

 Scintillation Monitor of the Secondary Beam

Experiment

On October, 21st, 2006 NUCLOTRON JINR The Beam ${ }^{12} \mathrm{C} \rightarrow{ }^{9} \mathrm{C}$

19 emulsion layers Scales of plate
$20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 550 \mu$ Momentum 2 A GeV/c

Emulsion Stack

The Beam Analysis

 Using the Multiple Coulomb Scattering$$
p \beta c=\frac{Z_{f} K t^{3 / 2}}{573 \bar{D}}
$$

where \mathbf{P} - the fragment momentum \mathbf{Z}_{f} - the fragment charge $\beta \mathbf{c}$ - velocity
K - "scattering const"
\mathbf{t} - the length of a cell
D - the mean deviation

Charge Topology of ${ }^{9} \mathrm{C}$ Nuclei Interactions with Emulsion Nuclei

$\sum \mathbf{Z}_{\mathrm{fr}}=\mathbf{6}$	\mathbf{N}_{fr}	$\mathbf{N}_{\mathbf{w s}}$	$\mathbf{N}_{\mathrm{fr}}+\mathbf{N}_{\mathrm{ws}}$
${ }^{8} \mathbf{B}+\mathbf{p}$	$\mathbf{5 1}$	$\mathbf{1 5}$	$\mathbf{6 6}$
${ }^{7} \mathbf{B e}+\mathbf{p}+\mathbf{p}$	$\mathbf{4 7}$	$\mathbf{1 6}$	$\mathbf{6 3}$
$\mathbf{3}^{\mathbf{3}} \mathbf{H e}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{2 5}$
$\mathrm{He}+4 \mathrm{H}$	80	28	108
$2 \mathrm{He}+2 \mathrm{H}$	54	22	76
6 H	6	16	25
\ldots	\ldots	\ldots	\ldots

${ }^{9}$ C Charge Distribution for "White" Stars

Double-charged Fragments Identification from ${ }^{9} \mathrm{C}_{\mathrm{ws}} \rightarrow 3^{3} \mathrm{He}$ Using the Multiple Coulomb Scattering Method

Fully Identified Event of ${ }^{9} \mathrm{C} \rightarrow 3^{3} \mathrm{He}$

Interaction Vertéx

$\mathrm{Fr}_{1}-{ }^{3} \mathrm{He}$

$\mathrm{Fr}_{2}{ }^{-}{ }^{3} \mathrm{He}$
$\mathrm{Fr}_{3}-{ }^{3} \mathrm{He}$

	Openangle i, j	P_{t}, MeV	$\Sigma \mathrm{P}_{\mathrm{t}}$, MeV	$\mathrm{P}_{\mathrm{t}}^{*}$, MeV	$\varepsilon_{\mathrm{i}, \mathrm{j}}$, rad	$\mathrm{M}_{\mathrm{eff}}$, MeV
Fr_{1}	0.056	466		216	3.038	0.046
Fr_{2}	0.055	154	760	111	3.034	8.786
Fr_{3}	0.004	148		106	0.211	9.017

Searching for ${ }^{9} \mathbf{C} \rightarrow \mathbf{3}^{\mathbf{3}} \mathrm{He}$ Channel

Transverse Momentum Distribution of $3{ }^{3} \mathrm{He}$-system for
Processes: ${ }^{9} \mathrm{C} \rightarrow 3{ }^{3} \mathrm{He}$

Opening angle Distribution for He-fragments in
${ }^{9} \mathrm{C} \rightarrow \mathbf{3}^{3} \mathrm{He}$ Fragmentation Channel

Fragmentation Channel Distribution for "White" Stars (Left Picture) and Events with Target Fragmentation (Right Picture) in Percent Ratio

Conclusions

人 Irradiation by relativistic ${ }^{9} \mathrm{C}$ nuclei with momentum 2 A GeV / c of emulsion was performed and 1746 inelastic interactions were recorded．

人 The mixed beam analysis showed that the primary beam is highly enriched with ${ }^{9} \mathrm{C}$ nuclei．
A Charge topology distribution of ${ }^{9} \mathrm{C}$ nuclei interactions with emulsion nuclei was obtained．

A The fragmentation channels respected to the lowest mass threshold are studied．

人 Angular and momentum distributions of fragments ${ }^{3} \mathrm{He}$ allowed to demonstrate some features of rare dissociation channel ${ }^{9} \mathrm{C} \rightarrow 3{ }^{3} \mathrm{He}$ ．

Thanks for Attention

