

PERIPHERAL DISSOCIATION OF RELATIVISTIC ⁹C NUCLEI IN NUCLEAR TRACK EMULSION

D. Krivenkov JINR, Dubna

XX International Baldin Seminar on High Energy Problems Dubna, Russia, October 4 – 9, 2010

Relative Scales

β-Decay of a ⁹C Nucleus

A photograph of an event interpreted as the beta decay of ⁹C. The ⁹C nucleus (track F) was produced in star (A) and disintegrated into a proton, two alpha particles, and a positron.

M. S. SWAMI, J. SCHNEPS, AND W. F. FRY

Department of Physics, University of Wisconsin, Madison, Wisconsin (Received June 29, 1956)

Amplitude Spectrum from a Scintillation Monitor of the Secondary Beam

Experiment

- **On October, 21st, 2006**
- NUCLOTRON JINR
- The Beam ${}^{12}C \rightarrow {}^{9}C$
- 19 emulsion layers Scales of plate 20 cm × 10 cm × 550 μ
- Momentum 2 A GeV/c/

Emulsion Stack

The Beam Analysis Using the Multiple Coulomb Scattering

pβc, GeV

Charge Topology of ⁹C Nuclei Interactions with Emulsion Nuclei

$\sum \mathbf{Z_{fr}} = 6$	N _{fr}	N _{ws}	$N_{fr} + N_{ws}$	
⁸ B + p	51	15	66	
$^{7}Be + p + p$	47	16	63	
3 ³ He	9	16	25	
He + 4 H	80	28	108	
2 He + 2 H	54	22	76	
6 H	6	16	25	
•••	•••	•••	•••	

⁹C Charge Distribution for "White" Stars

Double-charged Fragments Identification from ${}^9C_{ws} \rightarrow 3{}^3He$ Using the Multiple Coulomb Scattering Method

Fully Identified Event of ${}^{9}C \rightarrow 3 {}^{3}He$

Interaction Vertex

9C

	Openangle _{i,j} rad	P _t , MeV	ΣP _t , MeV	P _t *, MeV	ε _{i,j} *, rad	M _{eff} , MeV
Fr ₁	0.056	466		216	3.038	0.046
Fr ₂	0.055	154	760	111	3.034	8.786
Fr ₃	0.004	148		106	0.211	9.017

Searching for ⁹C→3 ³He Channel

Fragmentation Channel Distribution for "White" Stars (Left Picture) and Events with Target Fragmentation (Right Picture) in Percent Ratio

▲ Irradiation by relativistic ⁹C nuclei with momentum 2 A GeV/*c* of emulsion was performed and 1746 inelastic interactions were recorded.

▲ The mixed beam analysis showed that the primary beam is highly enriched with ${}^{9}C$ nuclei.

▲ Charge topology distribution of ⁹C nuclei interactions with emulsion nuclei was obtained.

▲ The fragmentation channels respected to the lowest mass threshold are studied.

▲ Angular and momentum distributions of fragments ³He allowed to demonstrate some features of rare dissociation channel ${}^{9}C \rightarrow 3 {}^{3}He$.

Thanks for Attention