

Radiobiological Effects of Accelerated Heavy Ions

Laboratory of Radiation Biology

On Earth - accelerators of heavy charged particles

The sources of heavy ions of high energies

In space – cosmic rays from Galaxy

The JINR accelerators

Accelerator	Particles	Energy	Lab
		(up to)	
Phasotron	Protons	660MeV	LNP
U-200, U-300	Heavy ions	10MeV/amu	LNR
U-400M	Heavy ions	50 MeV/amu	LNR
Sinchrophasotron	Protons,	10 GeV/amu	LHE
	Heavy ions		
Nuclotron	Protons,	3 GeV/amu	B AIR
	Heavy ions		

Tracks of heavy ions in nuclear emulsion

Fe

Mammalian cell

The dose distribution of radiation in matter

1 unit of the dose

1 unit of the dose

Fe ion

Radial dose distribution in track of heavy ion (¹²C, 2,57 MeV/u) What radiobiological problems can be solved at use of the accelerated heavy particles?

A. Heavy ions is a powerful tool for the solve of fundamental problems of radiation genetics

The RBE problem was solved at the Flerov Lab accelerators

DNA repair capacity of the living cells determines the type of RBE on LET dependence

Single DNA damages

Clustered DNA damages

Fragment of DNA

Clustered DNA damages

Clustered DNA damages in nucleosome

Yield of clustered damages on both DNA strands versus LET

LABORATORY OF RADIATION BIOLOGY

Double strand break of DNA

Consequences of DSB induction in cell genome

PAC 08

"Comet assay" for detection of DNA lesions

DSB induction in human lymphocytes by γ-rays and accelerated ¹¹B (40 keV/μm) ions

LABORATORY OF RADIATION BIOLOGY

Kinetics of DNA repair

The mechanism of DSB DNA repair in human cells

DSB (γ-H2AX) in human cells after X-ray (A) and heavy ion irradiation (B)

Radiation induced mutagenesis

The frequency of tonB and colB mutation induction after γ-ray and heavy ion irradiation

Induction of mutagenic DNA repair by heavy ions

luciferaseFMNH₂+ RCHO + O₂ \rightarrow FMN + RCOOH + H₂O + hv

The genetic net for induction of gene mutations by ionizing radiations in E.coli bacteria

UmuD'₂C

120 80 40 mol/cell

Induction of tonB⁻trp⁻ deletion mutations by heavy ions

- \circ γ -rays;
- - ⁴He (20 keV/µm);
- ▼ ⁴He (50 keV/µm);
- - ⁴He (78 keV/µm);
- ♦ ¹²C (200 keV/μm)

RBE on **LET** dependence

Formation of unstable chromosomal aberration after heavy ion irradiation of human cells

Formation of stable chromosomal aberration after heavy ion irradiation of human cells

3 D dimension of human chromosome

Chromosome 1 of human lymphocyte nucleus in interphase with fragment after irradiation 1 GeV protons at synchrophasotron. The 3 D dimension picture was obtained by using FISH technique and confocal microscopy.

RBE as a function of LET on induction of mutations, chromosomal aberrations and cell inactivation

Cytogenetical effect of low doses of accelerated ²⁴Mg ions

The frequency of cells with
chromosome aberrations.Chinese hamster cells
exposed to 24Mg ions with
energy 500 MeV/nucleon

B. Accelerated heavy ions is a tool for modeling of biological action of space radiation

Heavy charged particles from Galaxy are the most dangerous type of cosmic radiation

The GCR flux

The integral flux of GCR particles of carbon and iron groups equals to 10⁵ part cm-² per year

The relative flux of GCR particles

The energy spectrum of GCR and Nuclotron accelerator

Kinetic energy [MeV/nucleon]

Consequences of action of Galactic heavy ions

- Induction of cancer;
- Formation of gene and structural mutations;
- Violation of visual functions:
- lesions of retina;
- cataract induction;
- CNS violation

Gardner tumors

Nelson, 2006

Cataract

induction

Worgul et al., 2006

Cataract ratio after irradiation by iron ions and X-rays

Worgul et al., 2006

Latent damages of β_L -crystalline after irradiation by He ions and UV irradiation

UV aggregation of β_L -crystalline after irradiation by He ions (30 MeV)

Spectrum of β_L -crystalline fluorescence after irradiation by He ions (30 MeV)

Diffuse opacification of lens in mice

Accelerated heavy ions and CNS

Cosmic ray hit frequencies in CNS critical areas

- **CNS in General**
 - 2 or 13% cells will be hit at least one Fe particle
 - 8 or 46% would be hit by at least one particle with Z≥15
- Every nucleus will be traversed by a proton once every 3 days and a alpha particle once every 30 days.

FE ION TRACKS VISUALIZED BY MARKERS OF DNA DSBs (γH2AX)

Damages of large number cells in tissue by the single track of heavy ion

In Vitro Neurotoxic Effects of ⁵⁶Fe Ions on Retinal Explants

Vazquez, 2006

Количество инактивированных нейронов с r = 10 мкм в зависимости от пороговых значений ЛПЭ частиц при различной продолжительности полёта (0,3; 1 и 2 года)

р

Î

Зависимость поперечного сечения инактивации клеток млекопитающих и бактерий E.coli от ЛПЭ ускоренных тяжелых ионов

LABORATORY OF RADIATION BIOLOGY

⁵⁶Fe ions, 1 GeV/amu

1.5 Gy

Cognitive tests

(Morris Water Maze: DAY 4, REVERSAL)

1 month after irradiation

Thank you for the attention!