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It is known [1] that the presence of monopoles in the Universe would 

has allowed the most simply to explain the quantization of electric 

charges. The monopole theory, constructed by Dirac in 30th of last cen-

tury [2], did not suffered substantial changes in all past times, therefore 

the rather long time interval, devoted to the monopole search, gives 

cause to seriously treat the negative result of experimental works.  
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In the first place we shall consider (as N.A. Chernikov [3] who 

applied the hypothesis to the gravitational interaction) that fundamental 

physical interactions have finite ranges. Therefore it is necessary to re-

write the monopole potential  
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(it is used the system of units h/2π = c = 1, where h is the Planck con-

stant and c is the light speed) taking into account the results of 

Chernikov works in the form: 
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where g  is the magnetic charge of the particle; r  is the distance from 

the magnetic charge to an observer; L is the Lobachevsky constant; and 

sr  is the unit vector, whose direction defines the direction of the singu-

lar Dirac line; rs rr  - scalar and [ ]rs rr  - sr  and rr  vector product. (We con-

nect the direction of sr  with the spin direction of elementary particles. 

The offered interpretation takes account of the absence in experiments 

fundamental scalar particles for their detection [4].) Note, that the con-

stant L (which makes available the shielding of the magnetic charge g) 

will depend on the degree of the vacuum polarization (we consider that 

the vacuum is not a sterile one as in the previous work [4]).  
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In the case, if the elementary particle is composite, singular lines 

must be several that gives rise to the generalization of the potential (2).  
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Such generalization procedure on two lines could be found in the 

Schwinger paper [5] and on an arbitrary number of lines in the Usachev 

work [1]. As a result, from observable particles only neutron can pre-

tend to the role of the conditionally stable “composite” monopole with 

the minimum (3) number of singular lines and with zero electric charge. 

Hence a quark can pretend to the role of a fundamental monopole with 

a singular line but with a nonzero electric charge. In consequence of 

this we can interpret the baryonic charge as a magnetic one.  
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For the description of a physical system which is characterized by 

a finite shielding radius it is convenient to take advantage of a symme-

try, a group structure of which become precise only in asymptotical 

limits and in the general case it depends on space coordinates [4]. 

That’s precisely the problem on the development of the extended gauge 

formalism [6] became actual. It is the sense to use the given formalism 

for the description of strong interactions considering the dynamic sym-

metry breaking [7]. 

The status of the particular (different from electric one) magnetic 

charge must be verified by the presence of special virtual particles, 

which characterize it. The gluons can be regarded as such particles for 

hadron matter.  
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Considering the hadron as the nonlocal physical system it can be 

used the extended gauge formalism [6], within the scope of which it 

was received the propagator of a vector boson with a nonzero rest mass 

[8]. The formalism application will not be limited by the central hadron 

region where it is taken the gluon rest mass equal to zero. In the 

neighborhood of a hadron boundary the application of the precise SU(3) 

symmetry it is becoming inexpediently and quantum chromodynamics 

must be constructed on the base of a more general formalism [4], which 

is characterized by a quasi-group symmetry. Here it can be needed ap-

proximate methods of a description. For example it can be use spaces 

with nontrivial geometrical structure such as Riemannian one.  
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Let Mn is the Riemannian space-time [9], ( )xk
ijΓ  are the components 

of the internal connection (here and further Latin indices i, j, k, l,… will 

run the values of integers from 1 to n) , i∇  is the symbol of the covari-

ant derivative in regard to the connection ( )xk
ijΓ . We regard the follow-

ing gauge-invariant Lagrangian 
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where 
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(hereinafter rnnnedcbanlkji +++== ,...,2,1,,,,;,...,2,1),...(),(),(),( ; 
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Let . As a result the equations of fields  may be re-

ceived in a standard manner [10] as the Einstein gravitational equations 

4=n ( )xi
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( is the curvature tensor of the connection  of Riemannian 

space-time ). Naturally, that the Einstein equations only show a 

physical state of a matter. All this confirm a capability for interpreta-

tions of fields  or fields  as gravity potentials, but tak-

ing into account their dependence on properties of medium (vacuum), it 

is meaningful to call  and  by polarization fields. Pre-

cisely these fields describing the slow subsystem it can hide introducing 

the Riemannian structure of space-time, thereby we receive a possibility 

to apply the methods of differential geometry by the condensed descrip-

tion of physical systems not only in the cosmology, but and in the ele-

mentary particle physics [8]. 
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Let's study an approaching, in which the space-time is possible to 

consider as a Minkowski space, the fields ,  are constants and 

let 

)(k
iΦ i

k )(Φ

1=r , that assumes 0=c
abC . For obtaining equations of fields ( )xAb

i  

in Feynman perturbation theory the calibration should be fixed. For this 

we shall add the following addend: 
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to the Lagrangian (4), where bbbb qq η=o , b
bii CC = . Besides let 
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As a result of this equations of a vector field ( )xAb
i  will be written as: 
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Notice that owing to the vacuum polarization ( 0≠iC ) the propagator of 

a vector boson has the rather cumbersome view [8] 
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which is simplified and receives the familiar form  

( ( )2mppg k
k

ij −− ,  is the 4-momentum, and m is the mass of the 

vector boson) only in the Feynman calibration (

kp

1=oq ). This propagator 

allows to construct the renormalizable quantum theory of interactions 

( , by ), not attracting hypothetical scalar fields (the 

search of Higgs scalar bosons, forecasted in the standard model of elec-

troweak interactions, is unsuccessful one for quite more quarter of a 

century). As a result it can make the conclusion that elementary parti-

cles must be considered right from the start as the compound physical 

systems for the correct description of which’s it is necessary to attract 

polarization fields too. Polarization fields may be interpreted as fields 

describing “coat” consisting of virtual particles and surrounding the 

original bare particle.  
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