XX ISHEPP, Dubna

October 4, 2010

Solving Bethe-Salpeter Equation in Minkowski Space

V.A. Karmanov

Lebedev Physical Institute, Moscow, Russia

In collaboration with J. Carbonell, LPSC, Grenoble, France

• Plan

- Solution for spinless particles
- Two fermions
- Application to electromagnetic form factors

• **BS equation (1951)**

$$\left(\left(\frac{p}{2} + k\right)^2 - m^2 \right) \left(\left(\frac{p}{2} - k\right)^2 - m^2 \right) \Phi(k, p) \\ = -i \int \frac{d^4k'}{(2\pi)^4} K(k, k', p) \Phi(k', p)$$

• Singularity

$$\Phi(k,p) = \frac{\Gamma(p,k)}{\left(\left(\frac{p}{2}+k\right)^2 - m^2 + i\epsilon\right)\left(\left(\frac{p}{2}-k\right)^2 - m^2 + i\epsilon\right)}$$

$$\Gamma(k,p) = -i \int \frac{d^4k'}{(2\pi)^4} \frac{K(k,k',p)\Gamma(p,k')}{\left((\frac{p}{2}+k')^2 - m^2 + i\epsilon\right)\left((\frac{p}{2}-k')^2 - m^2 + i\epsilon\right)}$$

It is not a problem in principle (it is normal).

But it is a problem for numerical solution.

• Wick rotation

$$\int \dots d^4k = \int d^3k \int_{-\infty}^{\infty} \dots dk_0 = \int_{-i\infty}^{i\infty} \dots dk_0 = \int_{-\infty}^{\infty} \dots idk_4$$

• Euclidean space

Euclidean BS amplitude:

$$\Phi(\vec{k},k_0) \to \Phi_E(\vec{k},k_4) = \Phi(\vec{k},ik_0)$$

Euclidean BS equation (non-singular):

$$\left[\left(m^2 - \frac{M^2}{4} + \vec{k}^2 + k_4^2 \right)^2 + M^2 k_4^2 \right] \Phi_E(\vec{k}, k_4) \\ = \int \frac{d^3 k' dk_4}{(2\pi)^4} K_E(k, k') \Phi_E(\vec{k'}, k_4) \right]$$

It gives the bound state mass M.

But we need not only M, but also the BS amplitude in Minkowski space for practical applications (e.g., for em form factors).

Our aim is to find not only the binding energies, but the BS amplitude in Minkowski space.

• Separable kernel

V. Burov, S. Bondarenko, E. Rogochaya

Represent the kernel *K* in a separable form:

$$K(k, k', p) = \sum_{i=1}^{N} \tau_i(s) g_i(k, p) g_i(k', p)$$

BS equation is reduced to a system of linear (non-integral!) equations.

Solve it analytically, find BS amplitude in Minkowski space.

Applications to the np system (deuteron, its electrodisintegration).

• Our (exact) method

V. A. Karmanov and J. Carbonell, Eur. Phys. J. A27 (2006) 1. K. Kusaka, A.G. Williams, (1995): spinless particles, ladder kernel only.

Take BS amplitude in the Nakanishi form:

$$\Phi(k,p) = \int_{-1}^{1} dz' \int_{0}^{\infty} d\gamma' \frac{g(\gamma',z')}{\left[\gamma' + m^2 - \frac{1}{4}M^2 - k^2 - p \cdot k \ z' - i\epsilon\right]^3}$$

• Example

We set $g(\gamma, z) = 1$, calculate the integral and find

$$\Phi_M(k;p) = \frac{i^2}{\left[(\frac{p}{2}+k)^2 - m^2 + i\epsilon\right] \left[(\frac{p}{2}-k)^2 - m^2 + i\epsilon\right]},$$

i.e. just the product of two free propagators. BS amplitude is, of course, still singular. All the non-trivial dynamics is in the function $g(\gamma, z)$.

$$\Phi(k,p) = \frac{-i}{\left(\left(\frac{p}{2}+k\right)^2 - m^2\right)\left(\left(\frac{p}{2}-k\right)^2 - m^2\right)} \int \frac{d^4k'}{(2\pi)^4} K(k,k',p) \Phi(k',p)$$

Apply to both sides of BS equation the LF projection

$$\int dk_{-} \Phi(k,p) = \int dk_{-} \frac{-i}{\left(\left(\frac{p}{2} + k\right)^{2} - m^{2}\right) \left(\left(\frac{p}{2} - k\right)^{2} - m^{2}\right)} \int \frac{d^{4}k'}{(2\pi)^{4}} K(k,k',p) \Phi(k',p)$$

where $k_{-} = k_0 - k_z$

Obtain a non-singular equation for $g(\gamma, z)$.

• Equation for $g(\gamma, z)$

(Obtained analytically, without any approximation.)

$$\begin{split} &\int_0^\infty \frac{g(\gamma',z)d\gamma'}{\left[\gamma'+\gamma+z^2m^2+(1-z^2)\kappa^2\right]^2} \\ &= \int_0^\infty d\gamma' \int_{-1}^1 dz' \, V(\gamma,z;\gamma',z')g(\gamma',z') \end{split}$$

where
$$\kappa^2 = m^2 - \frac{1}{4}M^2$$
.
• This equation is equivalent to the initial BS equation.
Matrix form:

 $\lambda Bx = Ax$

It is just standard form for well known fortran subroutine.

Given $K(k, k', p) \Rightarrow$ find $V(\gamma, z; \gamma', z')$:

$$V(\gamma, z; \gamma', z') = \frac{p_+}{\pi} \int \frac{d^4k'}{(2\pi)^4} \frac{K(k, k', p)}{\left[k'^2 + p \cdot k'z' - \gamma' - \kappa^2 + i\epsilon\right]^3} \\ \times \frac{dk_-}{\left[\left(\frac{p}{2} + k\right)^2 - m^2 + i\epsilon\right] \left[\left(\frac{p}{2} - k\right)^2 - m^2 + i\epsilon\right]},$$

For any given BS kernel *K* we can calculate the kernel *V* of equation for $g(\gamma, z)$.

The method is valid for any kernel given by Feynman graphs.

• LF wave function

(As a by-product)

$$\begin{split} \psi(\vec{k}_{\perp}, x) &= \int_{-\infty}^{\infty} \Phi(k, p) dk_{-} \\ &= \int_{0}^{\infty} \frac{g(\gamma', 1 - 2x) d\gamma'}{\left[\gamma' + \vec{k}_{\perp}^{2} + m^{2} - x(1 - x)M^{2}\right]^{2}} \end{split}$$

• **OBE** (ladder) kernel ($\mu \neq 0$)

One-boson exchange (ladder) kernel K(k, k', p):

$$K(k, k', p) = \frac{-g^2}{(k - k')^2 - \mu^2 + i\epsilon}$$

Kernel $V(\gamma, z; \gamma', z')$:

$$V(\gamma, z; \gamma', z') = \frac{\alpha m^2 (1-z)^2}{2\pi \left[\gamma + z^2 m^2 + (1-z^2)\kappa^2\right]} \int_0^1 \frac{v^2 dv}{B_1^2}$$

 $\alpha = g^2 / (16\pi m^2)$

 $B_1 = B_1(\gamma, z; \gamma', z'; v)$ is a polynomial. Integral $\int_0^1 \frac{v^2 dv}{B_1^2}$ is calculated analytically. Equation is solved numerically.

• Kernel $V(\gamma, z; \gamma', z')$ v.s. z'

(* Spinless case *) z = 0.8

- Graphics -

• Numerical results (ladder, $\mu \neq 0$)

Coupling constant $\alpha = \frac{g^2}{16\pi m^2}$ as a function of the binding energy for $\mu = 0.15$ and $\mu = 0.5$							
	B	$\alpha(\mu = 0.15)$	$\alpha(\mu = 0.50)$				
	0.01	0.5716	1.440				
	0.10	1.437	2.498				
	0.20	2.100	3.251				
	0.50	3.611	4.901				
	1.00	5.315	6.712				

These results, with all shown digits, coincide with ones obtained in Euclidean space (by Wick rotation). • This is a test of the method.

• Function $g(\gamma, z)$

Function $g(\gamma, z)$ for $\mu = 0.5$ and B = 1.0. On left – versus γ for fixed values of z and on right – versus z for a fixed values of γ .

• **BS amplitude**
$$\Phi(k_0, k)$$
, $\vec{p} = 0$

in Minkowski space

Left: BS amplitude $\Phi(k_0, k)$ vs. k for a fixed values of k_0 . Right: BS amplitude $\Phi(k_0, k)$ vs. k_0 for a fixed values of k.

• BS amplitude

Comparison of Minkowski and Euclidean spaces

Left: BS amplitude $\Phi(k_0, k)$ in Minkowski space. Right: BS amplitude $\Phi_E(k_4, k)$ in Euclidean space.

Continuation of Minkowski \Rightarrow Euclidean space exactly coincides with direct solution in Euclidean space.

• LF wave function $\psi(k_{\perp}, x)$

$$\psi(\vec{k}_{\perp}, x) = \int_0^\infty \frac{g(\gamma', 1 - 2x)d\gamma'}{\left[\gamma' + \vec{k}_{\perp}^2 + m^2 - x(1 - x)M^2\right]^2}$$

Left: LFWF $\psi(k_{\perp}, x)$ versus k_{\perp} for fixed values of x. Right: $\psi(k_{\perp}, x)$ versus x for a few fixed values of k_{\perp} .

• Cross-ladder kernel

Euclidean space: M.J. Levine and J. Wright, Phys. Rev. D2, 2509 (1970); J.R. Cooke and G.A. Miller, Phys. Rev. C62, 054008 (2000). A. Amghar, B. Desplanques and L. Theusl, Nucl. Phys. A 694 (2001) 439.

Minkowski space solution:

J. Carbonell and V. A. Karmanov, Eur. Phys. J. A27 (2006) 11

• Numerical results (L +CL), $\mu = 0.15$

Binding energy *B* vs. coupling constant α for BS and LFD equations with the ladder (L) kernels only and with the ladder +cross-ladder (L+CL) one for exchange mass $\mu = 0.15$.

• Two fermions

This is much more realistic case.

BS amplitude depends of two spin indices of fermions. It is 2×2 matrix. Decompose it in terms of a basis:

$$\Phi(k,p) = (S_1\phi_1 + S_2\phi_2 + S_3\phi_3 + S_4\phi_4)$$

where

$$S_{1} = \gamma_{5}, \quad S_{2} = \frac{1}{M}\hat{p}\gamma_{5}, \quad S_{3} = \frac{k \cdot p}{M^{3}}\hat{p}\gamma_{5} - \frac{1}{M}\hat{k}\gamma_{5},$$
$$S_{4} = \frac{i}{M^{2}}\sigma_{\mu\nu}p_{\mu}k_{\nu}\gamma_{5}$$

with

$$\hat{p} = p_{\mu}\gamma^{\mu}, \quad \sigma_{\mu\nu} = \frac{i}{2}(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})$$

Four scalar functions $\phi_{1-4}(k, p)$.

Dubna2010 - p. 23/53

Nakanishi representation for all components ϕ_i .

$$\phi_{i}(k,p) = \frac{-i}{\sqrt{4\pi}} \int_{-1}^{1} dz' \\ \times \int_{0}^{\infty} d\gamma' \frac{g_{i}(\gamma',z')}{\left[\gamma'+m^{2}-\frac{1}{4}M^{2}-k^{2}-p\cdot k \ z'-i\epsilon\right]^{3}}.$$

• System of equations

$$\int_{0}^{\infty} \frac{g_{i}(\gamma', z)d\gamma'}{\left[\gamma' + \gamma + z^{2}m^{2} + (1 - z^{2})\kappa^{2}\right]^{2}} = \sum_{j=1,2,3,4} \int_{0}^{\infty} d\gamma' \int_{-1}^{1} dz' V_{ij}(\gamma, z; \gamma', z')g_{j}(\gamma', z')$$

The 4×4 kernel matrix is calculated similarly to the spinless case.

• Meson exchange Lagrangians

Scalar meson exchange Lagrangian:

 $\mathcal{L}^{int} = g_s \ \bar{\psi}\psi\phi^{(s)}$

Pseudoscalar meson exchange Lagrangian:

$$\mathcal{L}^{int} = i \ g_{ps} \ \bar{\psi} \gamma_5 \psi \ \phi^{(ps)}$$

Positronium

$$\mathcal{L}^{int} = g_v \bar{\psi} \gamma^\mu \psi A_\mu$$

Vertex form factor:

$$F(q) = \frac{\Lambda^2 - \mu^2}{\Lambda^2 - q^2}$$

• Numerical results

Euclidean solution: S.M. Dorkin, M. Beyer, S.S. Semykh and L.P. Kaptari, Few-Body Systems, **42**, 1, (2008).

Scalar exchange (Yukawa model)
$$\mu = 0.15, \Lambda = 2$$

B	g^2 (Dorkin et al.)	g^2 (We, Eucl.)	g^2 (We, Mink.)
0.08104	20.23	20.23	20.7
0.14773	30.34	30.34	31.7
0.27765	50.57	50.57	52.15

Binding energies, found via Mink. and Euclid, coincide within 2%. Not enough precision, after 4 digits coincidence in the spinless case!

• Discontinuity of $V_{ij}(\gamma, z; \gamma', z')$

One of the matrix elements V_{ij} at z = 0.3 v.s. z'. One can see the discontinuity at z' = z.

• Discontinuity of
$$V_{ij}(\gamma, z; \gamma', z')$$

Family of matrix elements at z = 0.3, 0.4, 0.5, 0.6 v.s. z'.

No catastrophe, but we should take care, choosing a method of the z' integration.

• Improving the method

Take the BS equation and multiply both sides by $\eta(k,p)$:

$$\eta(k,p) \ \Phi(k,p) = \frac{-i\eta(k,p)}{\left(\left(\frac{p}{2}+k\right)^2 - m^2 + i\epsilon\right)\left(\left(\frac{p}{2}-k\right)^2 - m^2 + i\epsilon\right)} \int \frac{d^4k'}{(2\pi)^4} K(k,k',p) \Phi(k',p)$$

where

$$\eta(k,p) = \frac{(m^2 - L^2)}{(k_1^2 - L^2 + i\epsilon)} \frac{(m^2 - L^2)}{(k_2^2 - L^2 + i\epsilon)}$$
$$= \frac{(m^2 - L^2)}{((\frac{p}{2} + k)^2 - L^2 + i\epsilon)} \frac{(m^2 - L^2)}{((\frac{p}{2} - k)^2 - L^2 + i\epsilon)}$$

Equation, before LF projection, remains the same!

- Use Nakanishi representation and apply to both sides the LF projection $\int \dots dk_{-}$.
- Obtain new equation for $g(\gamma, z)$. L appears in the equation, but the result does not depend on it!

• New equation for $g(\gamma, z)$

$$\int_{0}^{\infty} d\gamma' \int_{-1}^{1} dz' F(\gamma, z; \gamma', z') g_{i}(\gamma', z') = \int_{0}^{\infty} d\gamma' \int_{-1}^{1} dz' \sum_{ij} V_{ij}(\gamma, z; \gamma', z') g_{j}(\gamma', z')$$

L.-h. side: $F(\gamma, z; \gamma', z')$ – new R.-h. side: $V_{ij}(\gamma, z; \gamma', z')$ – new Double integral in I.-h. side.

• Kernel
$$V_{14}(\gamma, z; \gamma', z')$$
 v.s. $z', L = 1000$

Kernel $V_{14}(\gamma, z; \gamma', z')$ v.s. z' for fixed z = 0.95, L = 1000

Kernel $V_{14}(\gamma, z; \gamma', z')$ v.s. z' for fixed z = 0.95, L = 100

Kernel $V_{14}(\gamma, z; \gamma', z')$ v.s. z' for fixed z = 0.95, L = 50

Kernel $V_{14}(\gamma, z; \gamma', z')$ v.s. z' for fixed z = 0.95, L = 20

• Kernel
$$V_{14}(\gamma, z; \gamma', z')$$
 v.s. $z', L = 5$

• Kernel
$$V_{14}(\gamma, z; \gamma', z')$$
 v.s. $z', L = 3$

• Kernel
$$V_{14}(\gamma, z; \gamma', z')$$
 v.s. $z', L = 1.1$

• Numerical results

Scalar exchange (Yukawa model) $\mu = 0.15, \Lambda = 2, L = 1.1$

B	g^2 (Dorkin et al.)	g^2 (We, Eucl.)	g^2 (We, Mink.)
0.08104	20.23	20.23	20.23
0.14773	30.34	30.34	30.34
0.27765	50.57	50.57	50.57

Binding energies, found via Mink. and Euclid, coincide now within 4 digits. Good precision!

• Numerical results

Pseudo scalar exchange $\mu = 0.15, \Lambda = 2, L = 1.1$

B	g^2 (Dorkin et al.)	g^2 (We, Eucl.)	g^2 (We, Mink.)
0.1	260.8	262.1	262.1

Our binding energies, found via Mink. and Euclid, coincide within 4 digits. Difference with Dorkin et al. is 0.5%. Good precision!.

Binding energy for scalar exchange v.s. g

Binding energy for scalar exchange v.s. g^2 for $\Lambda = 2$, L = 1.1, $\mu = 0.15$ and $\mu = 0.5$

• Binding energy for PS exchange v.s. g^2

Binding energy for pseudo scalar exchange v.s. g^2 for $\Lambda = 2$, L = 1.1, $\mu = 0.15$ and $\mu = 0.5$

• Weight functions $g_i(\gamma, z)$

Scalar exchange

Left: Nakanishi weight functions v.s. γ for z = 0.6, for scalar exchange for $\Lambda = 2$, L = 1.1, $\mu = 0.15$ and $\mu = 0.5$. Right: Nakanishi weight functions v.s. z for $\gamma = 0.54$.

• **BS amplitudes** $\Phi_i(k_0, k)$, $\vec{p} = 0$

In Minkowski space

Left: Minkowski BS amplitudes vs. $k = |\vec{k}|$ for $k_0 = 0.04$. The amplitudes ϕ_1 and ϕ_2 are indistinguishable. Right: The same vs. k_0 for $k = |\vec{k}| = 0.2$

• Profit: EM form factor

E.m. vertex in terms of the BS amplitude.

• FF via Euclidean BS solution

Impossibility of Wick rotation.

Wick rotation in the form factor integral.

The singularities X in the first quadrant prevent from the Wick rotation!

Complex boost

 $\Phi(k,p) = \Phi(k^2, k \cdot p)$

$$k \cdot p = k_0 p_0 - \vec{k} \vec{p} \quad \Rightarrow \quad i k_4 p_0 - \vec{k} \vec{p}$$

However, solvable numerically (P. Maris et al.)

Static approximation, to avoid complex boost (M.J. Zuilhof and J.A. Tjon):

Take Euclidean BS amplitude at rest: $\Phi_E(k_4, \vec{k})$ Boost only the spatial component:

$$\Phi_E(k_4, \vec{k}) \Rightarrow \Phi_E(k_4, \vec{k} + \vec{p'})$$

Calculating EM form factors

Left: Form factor via Minkowski BS amplitude (solid curve), Euclidean one and and Euclidean one in static approximation (dashed).

Right: Form factor via Minkowski BS amplitude (solid curve, the same as at left panel) and in LFD (dot-dashed).

With BS solution in Minkowski space we can avoid all these problems and approximations!

• Minkowski vs. light-front solutions

Form factor via Minkowski BS amplitude (solid curve, the same as at left panel) and in LFD (dot-dashed).

• Conclusions

- A method to find Bethe-Salpeter amplitude in Minkowski space, both for spinless particles and fermions, is developed.
- The method is applied to the ladder (OBE) kernel and to the ladder +cross-ladder one.
- It can be applied to any kernel given by a Feynman graphs.
- It gives, as a by-product, LF wave function.
- Minkowski BS amplitude allows to calculate observables without uncontrolled approximations.