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♣ QCD behavior at large distances is an active field of research 

because many novel behaviors are expected at energies 

below 1 GeV (IR region).  Understanding of phenomena 

(quark confinement, QCD running coupling, etc.) requires 

a correct description of hadron dynamics in the IR region.

♣ The PT cannot be used effectively in the IR region and it is 

required either  to supply some phenomenologies, or to use 

some non-PT methods. 

♣ One of the fundamental parameters of nature, the QCD effective 

coupling, can provide a continuous interpolation between the 

asymptotical free state, where PT works well, and the 

hadronization regime, where non-PT techniques must be 

employed.   (e.g. Yu.L.Dokshitzer et al.,1996).

QCD at Large Distances



The polarization of QCD vacuum causes two opposite effects, 

the color  charge g is  screened by the virtual quark-antiquark 

pairs and antiscreened by the polarization of virtual gluons. 

The competition of these effects results in a variation of the 

physical coupling                       under changes of distance 1/Q.

EXPERIMENT: but its actual value must be obtained from 

experiment.  It is well determined experimentally at relatively 

high energies Q >2 GeV.
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THEORY: QCD predicts a dependence of             on energy 

scale Q. This dependence is described theoretically by the 

RG equations. 

QCD  Effective  Coupling



Measurements of        as a 

function of  energy  scale Q 

versa QCD predictions.
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♣ Consider a relativistic QF model with analytic (IR) confinement

♣ Determine the meson masses by solving Bethe-Salpeter eqs. 

♣ Adjust the model parameters by fitting heavy meson masses.

♣ Estimate      in the low-energy  domain below ~1 GeV. 

♣ Extract a specific IR-fixed point .

♣ Estimate intermediate meson masses (1< M < 9.5 GeV).

Aim:
We determine the QCD effective 

charge          in the low-energy 

(below ~1 GeV)  region by 

exploiting the hadron spectrum.
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A self-consistent and physically 

meaningful prediction of the QCD  

effective  charge in the IR regime 

remains actual in particle physics.
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The Model

• Consider a relativistic quantum-field model of quark-gluon interaction.      

G.Ganbold,  PRD79, 034034(2009);  PRD81, 094008 (2010)

Assumptions (in hadronization region):

♣ a) Quark and gluon propagators are analytic functions.

♣ b) the coupling remains weak (<1).  Then, ladder BSE is sufficient  

to estimate the meson (glueball) masses with reasonable accuracy.
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• Partition Functional written in terms of quark and gluon variables



Confinement and dynamical symmetry breaking are crucial features of QCD. 
Color confinement is the result of strong interaction  with higher-order terms.  

However, in the hadron scales (~ 200 MeV ~ 1 Fermi) QCD becomes non-PT. 

Moreover,  there is no analytic proof that QCD should  be color confining. 

The reason for  confinement may be somewhat complicated.  
Some other explanations of confinement:

Analytic Confinement  (AC) [H.Leutwyler 1980; G.V.Efimov et al. 1995]
IR Confinement [C.S.Fischer, R.Alkofer, L.von Smekal 2002]

Confinement in lattice MC simulations            [C.D.Roberts 1994; F. Lenz 2004]
Confinement in string theory in higher-D              [R.Alkofer, J.Greensite, 2007]

Confinement



IR-finite Propagators
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Schwinger-Dyson Eqs. + lattice QCD

IR confined:



• a) The quark and gluon propagators are entire functions in Euclidean space   
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• b) Leading-order contributions to quark-antiquark  bound state
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Quark-Antiquark Bound  States

• Allocate one-gluon exchange between colored currents
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• Perform Fierz transformation (J = S, P, A, V, T)

• Isolate color-singlet combination
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• Go to  c.m.frame (due to different quark masses)

• Orthonormalized system {U_Q} with quantum numbers Q={n,l, …}:

• Local quark currents and vertices with given quantum numbers
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• Gaussian representation:  a new path integration over auxiliary fields B: 
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• Explicit path-integration over quark variables and write the effective action
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• Hadronization Ansatz:        fields are identified as meson fields 

with given quantum numbers N
N

B

• Diagonalization on colorless quark currents
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• Diagonalization of the quadratic part is equivalent to the solution of the

ladder Bethe-Salpeter equation on the orthonormalized system {U_N}

• Symmetric Bethe-Salpeter kernel is defined:
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• Generating functional can be rewritten in terms of meson field variables.  

Isolate all quadratic (kinetic part) field configurations:

G.G., PRD79, 034034(2009)
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In relativistic quantum-field theory a stable bound state of “n” massive

particles shows up as a pole in the S-matrix with a center of mass energy.

• The meson mass may be derived from the equation:

Meson Mass Equation

• Renormalization: 2
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Spacelike and Timelike Domains
We use the meson mass M as the appropriate characteristic parameter, 

so our coupling                is defined in a timelike domain. 

On the other hand, most of known data on                are possible in the 

spacelike region. The continuation of the invariant charge from the spacelike 

to the timelike region (and vice versa) was elaborated by making use of the 

integral relationships between the QCD running coupling in Euclidean and 

Minkowskian domains (e.g. K.A.Milton 1999,  A.V.Nesterenko 2003):
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It is easy to show that

The one-loop massless analytic coupling 

in the spacelike and timelike domains
1
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Variational equation for meson masses:
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Meson Spectrum and Running Coupling
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Consider the most established sectors of hadron spectroscopy, 

the pseudoscalar (P) and vector (V) mesons. 

The polarization BS kernel is real and symmetric that allows us to find a 

simple variational solution to this problem. Choose a trial Gaussian function

This kind of scale dependence is most pronounced in leading-order QCD 

and often used to test and specify uncertainties of theoretical calculations 

for physical observables.
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R.Feynman: 
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Fixing Model Parameters

345M eV 

ˆ ˆ(9460) 0.1817, (3097) 0.2619,

ˆ ˆ(2112) 0.3074, (2010) 0.3138
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Extract intermediate values the effective coupling in interval 2–10 GeV 

from a smooth interpolation of known data (Table 1). Particularly,

As a particular case, for we solve Eq.2 and fix parameters

192.56, 293.56,

1447.59, 4692.51
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Finding Effective Coupling in Region Below 1 GeV

Having fixed the model parameters, we solve an inverse problem and

find the effective coupling in the region below 1 GeV as follows:
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Our estimates of               at 

red dots               =330 MeV; 

blue diamonds     =345 MeV;
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3-loop analytic coupling (solid), 
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|relative errors| < 3%

Calculating Intermediate Meson Masses



IR-finite Behavior of Effective Coupling

The possibility that the QCD coupling constant features an IR-finite behavior 

has been extensively studied in recent years [S.Brodsky 2004, A.C.Aguilar 

2004, D.V.Shirkov 2003, etc.].

Consider the IR-fixed point  

by  evaluating  Eq.(2) for 

M=0 , m1= m2=m  and

0
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The phenomenological 

evidence for effective 

coupling finite in the IR 

region is much more 

numerous.
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Note that a value of order ~2 or larger would be definitely out of line with 

many other phenomena, such as nonrelativistic potentials for a charmonium 

[A.M.Badalian  2000] and analytic perturbation theory [D.V.Shirkov 1997]. 

Obviously, this constrains  the value of constituent quark mass:

2
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Since we are searching the IR-fixed point, it is reasonable to choose the 

lightest  (up/down) quark mass.  Particularly, for 

m=192.56 MeV    and      =345 MeV     we obtain
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Our result is in reasonable 

agreement with 

often-quoted estimates:
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By interpolating smoothly obtained results into the intermediate-energy region 

we calculate                 on a wide interval of energy scale  0.14–9.5 GeV. ˆ ( )
s

M



Summary:

♣ We show that taking into account the correct symmetry structure of the 

quark-gluon interaction in the confinement region (reflected in simple forms 

of propagators) can result in reasonable description of physical characteristics  

in low-energy particle physics. 

Particularly, the QCD running coupling and conventional meson spectrum may 

be explained reasonably in the framework of a simple relativistic quantum-field 

model of quark-gluon interaction based on analytic (or, IR) confinement. 

♣ Despite its model origin, the approximations used, and questions about 

the very definition of the coupling in the IR region, our approach exhibits 

a new, independent, and specific IR-finite behavior of QCD coupling.

♣ The merit of our model is the ability to address simultaneously different 

sections of the low-energy particle physics. The consideration can be 

extended  to other problems  (glueballs, decay constants, exotic mesons, 

qq-gg mixed states, multiquark BS, baryons, …etc.).


