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1. The problems of bound state system

Currently there exist the following conception of the 

structure and mechanism of formation of quantum 

objects: bound states are composed of fermions and 

the interactions between the fermions are carried out 

through the exchange of bosons. Particularly, in an 

atomic structure consisting of electrons and nuclei 

such bosons are photons, nucleons in a nucleus are 

bound by mesons, while hadrons consisting of quarks 

by gluons. 



 However, in modern relativistic quantum field theory (QFT)

formation and description of bound states is still not a well-posed

problem. It describes the elastic and inelastic scattering of free

relativistic particles located at large distances from each other and

constituting plane waves.

 On the other hand, it is well known that the energy spectrum of

a bound state can be determined accurately within the 

non-relativistic quantum mechanics (NRQM) with an appropriate

choice of the interaction potential.

 Thus, real physics requires creation of a mathematical theory

that describes bound states on the basis of QFT. All the efforts

spent in this direction can be divided into two categories.



 The starting point in one direction is the assertion that if there are

bound states of two particles with the appropriate quantum numbers,

then the amplitude of elastic scattering of these particles has a simple

pole in the energy at the mass of the bound state. The Bethe-Salpeter

equation and the so-called quasipotential equation was formulated on

the basis of this idea.

 Another trend is based on the belief that the non-relativistic SE

is a reliable tool for investigating and determining the energy

spectrum of bound states. Meanwhile the true relativistic corrections

are small, so that the theoretical problem is reduced to obtaining

relativistic corrections to nonrelativistic interaction potential based

on the formalism of QFT. 



 There is another approach based on the following idea. Exact

solutions for quantum field Green’s functions can be formally

represented in the form of functional integrals. Computing

functional integrals is still in its immaturity. However, the available

representations can be used to obtain solutions to the onrelativistic

Schredinger equation in the form of Feynman functional integral

with a potential containing the necessary relativistic corrections.

Not much work have been done in this direction. Our studies

continue these efforts.



2. The mass spectrum bound 
state system

 In this section, we will present one of the alternative methods of 

the bound state mass determination when the nonperturbative and

relativistic character of the interaction is taken into account. The

polarization loop function for a scalar particle can be written as

(2.1)



Here the averaging over the external gauge field is performed. The
Green function for the scalar particle in the external gauge
field is determined from the equation

(2.2)

where m is the mass of the scalar particle, and g is the 
coupling constant. In averaging over the external gauge 
field ; let us consider only the lowest order or only 
the two-point Gauss correlator

(2.3)



where is the real current. The propagator of 
the gauge field has the following form:

(2.4)

The mass of the bound state is usually defined through the 
loop function in the following way:

(2.5)

Thus, if we know the loop function, then we can determine the 
bound state mass. The solution of (2.2) can be represented as 
a functional integral in the following way ( Dineykhan M.,  Efimov 

G.V. and  Namsrai Kh.  Fortschr.         Phys. 1991.V.39. P. 259. )

(2.6)



where the following notation is used:

(2.7)

with the normalization

where N is the normalization constant. Substituting 
(2.6) into (2.1) and performing averaging over the
external gauge field one can obtain for the loop function

and

(2.8)



Here

(2.9)

and the following notation is introduced:

(2.10)

We determine the polarization loop function for two charged 
scalar particles in the external gauge field with masses 
On the other hand, the functional integral represented in 
(2.9) is analogous to the Feynman path integral for the 
motion of two particles with masses in the non-
relativistic quantum mechanics. The interaction between 
these particles is described by expression (2.10) which 
contains the potential and nonpotential parts, in particular, 

define nonpotential interactions, and ; 
defines potential interactions of a nonlocal nature.



In the asymtotic the integral (2.9) 
represented as:

(2.11)

According to (2.5), one needs to derive the loop function in 
asymptotics. In this approximation the integral in (2.9) is
evaluated by the saddle-point technique and, hence, for the
bound state mass we obtain

(2.12)

Then the interaction Hamiltonian can be represented in the 
form

(2.13)



From the SE

the - eigenvalues of the Hamiltonian (2.13) can be 
determined. In the this case :

(2.14)

(2.15)

the parameters we considered as mass.

(2.16)

(2.17)

(2.18)



3. The nonperturbative correction for the 
interaction hamiltonian

In the standard evaluation, when the relativistic character of 
interaction is taken into account, one usually restricts oneself 
to the lower order of the value, but in our case the ultra-
relativistic limit is also included, namely, we determine the 
interaction type by summation of the infinite series in power 
of . Now we start the determination of the interaction
Hamiltonian structure. Taking (2.10) into account and using 
the Fourier transformation of the gluon propagator let us 
rewrite the expression for in the following way:

(3.19)



where and is the 
Fourier image of the D function. The interaction 
between constituent particles is caused by the 
interchange of the gauge field quanta so let us write 
the propagator in the standard way:

(3.20)

According to (3.19), after integration over we have for 
the interaction potential

(3.21)



where the following notation is introduced:

(3.22)

Here and are considered as the proper time of the 
constituent particles 1 and 2, 



where u is a new variable. Taking into account (3.22) 
and (3.23) and integrating over and, after 
some simplifications, from (3.21) we obtain

(3.23)

(3.24)

Let us consider each term in (3.24) separately. The first term 
corresponds to the contribution of the one-photon (one-gluon) 
exchange and contains the diagonal and nondiagonal
interaction



where

In this case, from (3.24) and (3.25) we can see that the 
diagonal interaction, when , defines the mass 
renormalization. So V (0) conforms with the ordinary mass 
operator renormalization in the nonrelativistic limit and will 
be considered as a constant parameter in the following 
calculations. Simonov Yu.A. Phys. Lett.B. 2001 .V.515. P.137.

(3.25)

(3.26)



The second term in Eq.(3.24) contains only the 
cross items . The diagonal terms are equal to 
zero. Combined result for the interaction Hamiltonian 
with the nonperturbative correction coming from 
(3.25) reads

(3.27)

where is the nonrelativistic Hamiltonian and is 
the nonperturbative correction

(3.28)

Thus, we have obtained the nonperturbative correction to the 
interaction Hamiltonian which is related to the relativistic 
nature of the system.. Dineykhan M., Zhaugasheva S.A., // Few-Body 

Systems. 2005. V.37. P.49-69.



4. The interaction Hamiltonian

The total Hamiltonian:

where

is central hamiltonian

is the spin-orbit interaction

(4.1)

(4.2)

(4.3)

(4.4)



is spin-spin

is spin-orbit

is tensor. The potentials:

Used the notations

(4.5)

(4.6)

(4.7)

(4.8)



The nonperturbative Hamiltonian

(4.9)



5. The energy spectrum total amiltonian 
with relativistic corrections.

We consider the SE:

The energy spectrum and wave function are determined 
from SE in the framework of the oscillator representation 
(OR) method and let us change the variables in the 
following way

Here     is the variational parameter connected with 
asymptotic behavior of the wave function. SE in

(5.1)

(5.2)



where d is the dimension of

We consider the bound state systems whit        and  
quarks. In the this case the mass and constituent mass 
determined from

(5.3)

(5.4)

(5.5)



Introduce the new variables

The energy spectrum singlet state:

and for the triplet:

(5.6)

(5.7)

(5.8)



From (5.5) we obtained the equation for u. For        :

and for S = 1:

The parameters     and      is determined as

(5.9)

(5.10)

(5.11)



where used the notations:

(5.11)

(5.12)
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6.The mass spectrum (cb) mesons

The quark mass:

In the this case

For the energy spectrum with S = 0:

(6.1)

(6.2)



and for S = 1:

(6.3)





7. The Radiative and Leptonic decay of mesons

We consider the E1 transition and the width determined 
in the form

where

and we have

(7.2)

(7.1)

(7.3)



Let us consider the leptonic decay of vector mesons

where

(7.4)

(7.5)



For the width of leptonic decay of vector mesons 
we have:



8. Conclusion

On the basis of the obtained results the following conclusions can 
be made:
Our approach is based on the investigation of the asymptotic behaviour 
of the polarization loop function for scalar charged particles in an external 
gauge field and we determined the interaction Hamiltonian including the 
relativistic corrections.The potential is determined by the contributions of 
a every possible type of Feynman diagrams with exchange of gauge 
fields.The mass spectrum of the bound state is analytically derived. The 
mechanism for arising of the constituent mass of the relativistic bound
state forming particles is explained. The mass and the constituent mass 
of mesons is calculated taking into account relativistic corrections with 
spin-orbit interactions.


