P-adic Coverage Method in Fractal Analysis of Shower

T.G. Dedovich & M.V. Tokarev JINR, Dubna, Russia

Outline

- Self-similarity and fractality in multiple production at high energies
- Analysis results of the Box Counting Method for determination of the fractal dimension
- The method of analysis of regular showers
- **Summary**

Self-similarity & Fluctuation & Intermittency

ISHEPP 2010

Self-similarity & z-Scaling

High- p_T inclusive particle spectra is described by the dimensionless function Ψ depending on a single variable z

$$\Psi(z) = \frac{\pi \cdot s}{(dN/d\eta) \cdot \sigma_{inel}} \cdot J^{-1} \cdot E \frac{d^3 \sigma}{dp^3} \qquad \qquad Z = Z_0 \ \Omega^{-1} \qquad \qquad \Omega = (1 - X_1)^{\delta_1} (1 - X_2)^{\delta_2}$$

s- the energy of colliding, $dN/d\eta$ - the multiplicity density, σ_{inl} - inelastic cross section, $Ed^3\sigma/dp^3$ - the inclusive cross section, J- coefficient depend on the kinematical variable. X_1, X_2 : Max $\Omega(x1, x2)$ and conservation laws 4-momentum of the exclusive subprocess

$$(x_1P_1 + x_2P_2 - p)^2 = (x_1M_1 + x_2M_2 + m_2)^2$$

ISHEPP 2010

Self-similarity & Fractality & Multiple production

 $\mathbf{F}_{\mathbf{a}}(\delta \mathbf{y}) \sim (\delta \mathbf{y})^{-\phi(\mathbf{q})}, \qquad \mathbf{G}_{\mathbf{a}}(\delta \mathbf{y}) \sim (\delta \mathbf{y})^{-\tau(\mathbf{q})},$

Ψ(z) ~ z ^{-β}

Power Laws established experimentally, and characterizing self-similarity of particles production on different scales are typical for fractals

Fractal is the self-similar object with **nonintegral (fractal) dimension Fractal dimension** is the value $D_{\rm F}$ which provides the finite limit $N(\delta)$ - is number of probes size δ , covering an object

 $\lim_{\delta\to 0} N(\delta) \cdot \delta^{D_F} = const$

Relationship of fractal and multiple production

Power Law exponent $\tau(q)$ (Intermittency: $G_a(\delta y) \sim (\delta y) -\tau(q)$)

defines

spectrum of fractal dimension (generalized fractal dimension)

 $D(q) = \tau(q)/q-1$

- Set of hadrons produced in inelastic interaction are set of points of the three -dimensional phase-space (p_{τ}, η, ϕ)
- The distribution of points in phase-space is non-uniformly and is determined by the interaction dynamics.
- Set of these points in the phasespace are considered as a fractal.

Models of multiple production & Intermittency

- Partons cascade: $Q_0^2 = 0.4 \Gamma \Im B^2$, hardronization keeps the fractality
- JETSET: hardronization
- ARIADNE: Q_0^2 , hard and soft process relation

Ginzburg-Landau second order phase transition model: (Formation of QGP, thermodynamic equilibrium, phase transition) R.C. Hwa, M.T. Nazirov. Phys.Rev.Lett. 1992, v.69, p.741 Are most promising in describing the Intermittency $G_q(\delta y) \sim (\delta y)^{-\tau(q)}$

Spectrum of fractal dimension D(q) = t(q)/q-1

Cascade process: D(q) – is a linear Theory of phase transition: D(q) - is const

Determination of fractal dimensions is important for reconstruction of interaction dynamics

Box Counting method

- Choice of some set of different bin widths (probes) δ_i . It is defined by the δ_{min} , δ_{max} , law of δ-change
- \succ Construction the distributions of analyzed value y for every bin width δ_i
- Counting the number of non-zero bins $N(\delta_i)$
- Plotting the graph in double-log scale $\ln N(\delta_i)$ vs. $\ln \delta_i$
- For a start of the second start of the second

The Box Counting method has a single parameter - set of bin widths

Test Box Counting Method Parton final-state shower is used as a test fractal

Laws of final-state parton shower (PYTHIA)

- > At each step of shower parton branch into two daughter partons $a \rightarrow bc$
- Final state shower is time-like ($m_{eff} > 0$, depends on Q_0) $m_{eff,g} = 1/2 \cdot Q_0$, $m_{eff,q} = (m_q^2 + 1/4 \cdot Q_0^2)^{1/2}$
- ▶ If $m_{eff}^2 \ge Q_0^2$ parton can branch
- The kinematic of process is described by the energy fraction **z**: $E_b = zE_a$, $E_c = (1-z)E_a$
- > The range of admissible values z_{-} (m_{eff}) < $z < z_{+}$ (m_{eff}) is defined by the effective mass

$$Z_{\pm} = 1/2 + \{1 + (m_{effb}^2 - m_{effc}^2) / m_{effa}^2 \pm |\mathbf{p}_a| / E_a \cdot \sqrt{(m_{effa}^2 - m_{effb}^2 - m_{effc}^2)^2 - 4m_{effc}^2 m_{effb}^2} / m_{effa}^2 \}$$

> The range of a opening angle: $\Theta_{-}(z_{-}) < \Theta < \Theta_{+}(z_{+})$ is defined by the values Z_{+}, Z_{-}

$$\theta_{\pm} \approx 1/(\sqrt{z_{a\pm}(1-z_{a\pm})}) \cdot m_{aeff}/E_a$$

The opening angles are ordered: Θ_{b} , $\Theta_{c} < \Theta_{a}$ (opening angle of a daughter parton can't be more parent)

branching

ISHEPP 2010

Scenario of parton shower – Triad Cantor Set

• Outgoing from hard process parton branch $a \rightarrow bc$

 θ_{\pm} - admissible opening angle Black rectangles –permissible parts η

Branching process is repeated

Power Law: $N_i^{part}/N^{part}(\Delta \eta) \sim (\Delta \eta)^d$ $d = D_F = In2/In3 \approx 0.63093$

The shower is regular, binary cascade with permissible $1/3 \eta$ parts

- 5 level (32 partons) of this cascade are used to test of the Box Counting method to define the fractal dimension
 - Pseudorapidity distribution $1/N \cdot dN/d\eta$ of final partons is analyzed
 - Pseudorapidity is chosen randomly from permissible range for each final parton

ISHEPP 2010

Restoration accuracy of D_F vs. Set of bin widths

 $\Delta \eta = (1/3)^{i} \eta$ (Triad Cantor Set)

 $M_i = (1/3)^i$

P-adic Coverage Method

- Read out data $\{\eta_i\}$ of partons
 - Construction of pseudorapidity distributions for different set of bins.

In each set the number of bins are changed as degree of **basis P** ($M_i = P^{i-1}$).

These distributions are various P-adic Coverages of the pseudorapidity space.

- Counting the number of binary cascade level $N_{lev} = LOG_2 N^{part}$, N^{part} is number of partons
- Plotting the graph In N(M) vs. In M (number of points $N_{lev} + 1$ in graph)
 - Determination of the values of χ^2 (P) and the slope parameter b(P)
- > Determination of the optimum set of bins. It corresponds to $\chi^2(P) < \chi_{lim}^2$
 - The optimum set of bins M(P) defines:
 - 1. The fractal dimension $D_F = b(P)$ with maximum accuracy.
 - 2. Permissible parts in η -space, 1/k=1/P).

Choice $\chi_{\text{lim}}^2 = 10^{-5}$

- The dependence of χ^2 (P) for regular binary cascade with permissible 1/8 η -part has a local and global minimum
- The global minimum $\chi^2 < 10^{-21}$ corresponds to the optimum set
 - The value of $\chi_{lim}^2 = 10^{-5}$ uniquely defines the optimum set of bins for binary cascade with different permissible 1/k (k = 3÷20) parts η ,

 \succ

Binary cascades with permissible 1/k parts of η

ISHEPP 2010

Structure of the filled space

- Record of level structures (Structure arrays for each bin widths in the set)
- > Determination of regularity for each level (structures within level must be self-similar)
- Determination of cascade regularity (each level must be regular and level structures must be self-similar)
 - For regular cascade the filled parts of space are defined by the arrays Structure They are self-similar i.e. they are same structure at different scales

Level structure of regular binary cascade with filled 1 and 3 part of η

The 1-level structure is defined by the one array. It consists of 3 elements (101). This array reflects the structure of the filled space.

The 2-level structure consists of two arrays. Each of arrays corresponds to structure of the filled parts of the first level. Structure Arrays

		•	.01)
		2: (101)	(101)
		3: (101) (101)	(101) (101)
	11 11	4 : (101) (101) (101) (102	1) (101) (101) (101) (101)
ISL	EDD 2010	T. Dedovich	JINR

Analysis of the arrays Structure

Restored cascade structure Define filled parts η space at each cascade level

ISHEPP 2010

Complex cascades ($1 \rightarrow N$ partons) - N-ary cascades

Reconstruction of complex cascade (4-ary)

Dependences In N on In M for ten sets of bins (M_i=Pⁱ⁻¹, p=1...10) have a plateau. Existence of plateau is connected to redundancy of considered levels.

- Region without plateau is fitted (N_{fit}), points $\Delta N_i = (N_i N_{i-1}) = 0$, i = N...0 is excluded
- \blacktriangleright Value χ^2 (P)<10⁻⁵ correspond the set of bins M: M_i=7ⁱ⁻¹. It set defines
 - 1. Fractal dimension D_F with maximum accuracy
 - 2. Level structure (filled parts of space)
 - 3. Number of cascade level ($N_{lev} = N_{fit}$ -1)
 - 4. Number of partons at branching N_{part}

(number of non-zero element in the array Structure for 1-level)

JINF

P-adic Coverage Method - I

- Read out data $\{\eta_i\}$ of partons
- Construction of pseudorapidity distributions for different set of bins.
 - M: $M_i = P^{i-1}$ (P-adic Coverage)
- \succ Counting the number of binary cascade level N_{lev}=LOG₂N^{part}, N^{part} is number of partons
 - Plotting the graph $\ln N(M)$ vs. $\ln M$ (number of points $N_{lev} + 1$ in graph)
- > Determination of the values of χ^2 (P) and the slope parameter b(P) (region without plateau)
- Determination of the optimum set of number of bins. It corresponds to $\chi^2(P) < 10^{-5}$
- The optimum set of bins M(P) defines:
 - 1. The fractal dimension $D_F = b(P)$ with maximum accuracy.
 - 2. Level structure (filled parts of space)
 - 3. Number of cascade level ($N_{lev} = N_{fit}$ -1)
 - 4. Number of partons at branching $N_{part} = N(M_2)$

 \succ

Summary

Box counting method was analyzed

It was established existence the optimum set of bins. It provides exact restoration of D_F and is connected with the law of cascade formation.

 The P-adic Coverage Method of fractal analysis was proposed. It was used for regular cascade with permissible 1/N parts η This method allows to define:

- Fractal dimension $D_F = b(P)$ with maximum accuracy
- Cascade structure (filled parts of space)
- Number of cascade level
- Number of partons at branching

Thank You for attention

ISHEPP 2010