P-adic Coverage Method in Fractal Analysis of Shower

T.G. Dedovich \& M.V. Tokarev JINR, Dubna, Russia

Outline

- Self-similarity and fractality in multiple production at high energies
- Analysis results of the Box Counting Method for determination of the fractal dimension
- The method of analysis of regular showers
- Summary

Self-similarity \& Fluctuation \& Intermittency

Power Law dependence of factorial moments $\mathbf{F}_{\mathbf{q}}(\delta \mathbf{y}), \mathrm{G}_{\mathrm{q}}(\delta \mathbf{y})$ on bin widths $\delta \mathbf{y}$

$$
\mathbf{F}_{\mathbf{q}}(\delta \mathbf{y}) \sim(\delta \mathbf{y})^{-\phi(\mathbf{q})}
$$

$$
\mathbf{G}_{\mathbf{q}}(\delta \mathbf{y}) \sim(\delta \mathbf{y})^{-\tau(\mathbf{q})}
$$

$$
\begin{aligned}
F_{q}(\delta y) & =M_{q-1}^{M} \frac{\left\langle\sum_{k=1}^{M} n_{k}\left(n_{k}-1\right) \ldots\left(n_{k}-q+1\right)\right\rangle}{G_{q}}=\sum_{m=1}^{\prime} p_{m}^{q}, p_{m}=n_{m}^{\prime \prime}, n=\sum_{m=1}^{M} n_{m}
\end{aligned}
$$

$\mathrm{M}=2^{\mu}$-number of bins with width $\delta \mathrm{y}$, n_{k} - number of particles in k -bin

Self-similarity \& z-Scaling

High- p_{T} inclusive particle spectra is described by the dimensionless function Ψ depending on a single variable z

$$
\Psi(\mathrm{z})=\frac{\pi \cdot \mathrm{s}}{(\mathrm{dN} / \mathrm{d} \eta) \cdot \sigma_{\mathrm{inel}}} \cdot \mathrm{~J}^{-1} \cdot \mathrm{E} \frac{\mathrm{~d}^{3} \sigma}{\mathrm{dp}^{3}} \quad \mathrm{Z}=\mathrm{Z}_{0} \Omega^{-1} \quad \Omega=\left(1-\mathbf{X}_{1}\right)^{\delta_{1}}\left(1-\mathbf{X}_{2}\right)^{\delta_{2}}
$$

s - the energy of colliding, $d N / d \eta$ - the multiplicity density, $\sigma_{\text {in }}{ }^{-}$inelastic cross section, $\mathrm{Ed}^{3} \sigma / \mathrm{dp}^{3}$ - the inclusive cross section, J - coefficient depend on the kinematical variable. $\mathrm{x}_{1}, \mathrm{x}_{2}$: Max $\Omega(\times 1, \times 2)$ and conservation laws 4 -momentum of the exclusive subprocess

$$
\left(x_{1} \mathrm{P}_{1}+\mathrm{x}_{2} \mathrm{P}_{2}-\mathrm{p}\right)^{2}=\left(\mathrm{x}_{1} \mathrm{M}_{1}+\mathrm{x}_{2} \mathrm{M}_{2}+\mathrm{m}_{2}\right)^{2}
$$

Energy, angular independence of $\Psi(z)$
Power low $\Psi(z) \sim z^{-\beta}$ over a wide z-range
It indicates on self-similarity of hadron production at various scale

Self-similarity \& Fractality \& Multiple production

$$
F_{q}(\delta \mathbf{y}) \sim(\delta \mathbf{y})^{-\phi(q)}, \quad \mathbf{G}_{\mathbf{q}}(\delta \mathbf{y}) \sim(\delta \mathbf{y})^{-\tau(\mathbf{q})}, \quad \boldsymbol{\Psi}(\mathbf{z}) \sim z^{-\beta}
$$

Power Laws established experimentally, and characterizing self-similarity of particles production on different scales are typical for fractals

Fractal is the self-similar object with nonintegral (fractal) dimension Fractal dimension is the value $\mathbf{D}_{\mathbf{F}}$ which provides the finite limit

$$
\lim _{\delta \rightarrow 0} N(\delta) \cdot \delta^{D_{F}}=\text { const }
$$ $\mathbf{N}(\delta)$ - is number of probes size δ, covering an object

Models of multiple production \& Intermittency

Cascade process (branching self-similar jets) Dremin. et. all. // Usp. Fiz. Nauk. 163, 1-60, 1993

- Partons cascade: $\mathrm{Q}_{0}{ }^{2}=0.4$ Гэ B^{2}, hardronization keeps the fractality
- JETSET: hardronization
- ARIADNE: $\mathrm{Q}_{0}{ }^{2}$, hard and soft process relation

Ginzburg-Landau second order phase transition model:
(Formation of QGP, thermodynamic equilibrium, phase transition)
R.C. Hwa, M.T. Nazirov. Phys.Rev.Lett. 1992, v.69, p. 741

Are most promising in describing the

Intermittency
$\mathbf{G}_{\mathbf{q}}(\delta \mathbf{y}) \sim(\delta \mathbf{y})^{-\tau(\mathbf{q})}$

Spectrum of fractal dimension $\quad \mathbf{D}(\mathbf{q})=\mathbf{t}(\mathbf{q}) / \mathbf{q}-1$
Cascade process: $D(q)$ - is a linear Theory of phase transition: $\mathrm{D}(\mathrm{q})$ - is const

Determination of fractal dimensions is important for reconstruction of interaction dynamics

Box Counting method

$>$ Choice of some set of different bin widths (probes) δ_{i}. It is defined by the $\delta_{\text {min }} \delta_{\text {max }}$, law of δ-change
$>$ Construction the distributions of analyzed value y for every bin width δ_{i}
Counting the number of non-zero bins $\mathrm{N}\left(\delta_{\mathrm{i}}\right)$
Plotting the graph in double-log scale $\ln \mathrm{N}\left(\delta_{\mathrm{i}}\right)$ vs. In δ_{i}
$>$ If analyzed space is fractal the graph is linear and fractal dimension D_{b} is equal to the slope parameter $b(\delta)$

The Box Counting method has a single parameter - set of bin widths

Test Box Counting Method

Parton final-state shower is used as a test fractal

Laws of final-state parton shower (PYTHIA)

$>$ At each step of shower parton branch into two daughter partons $\mathbf{a} \rightarrow \mathbf{b c}$
Final state shower is time-like ($\boldsymbol{m}_{\text {eff }}>0$, depends on $\mathbf{Q}_{\mathbf{0}}$) $\mathbf{m}_{\text {eff,g}}=1 / 2 \cdot \mathbf{Q}_{0}, \mathbf{m}_{\text {eff, } \mathbf{q}}=\left(\mathrm{m}_{\mathrm{q}}{ }^{2}+1 / 4 \cdot \mathbf{Q}_{0}{ }^{2}\right)^{1 /}$
If $\mathbf{m e f f}^{2} \geq \mathbf{Q}_{0}{ }^{2}$ parton can branch
The kinematic of process is described by the energy fraction \mathbf{z} : $\mathrm{E}_{\mathrm{b}}=\mathrm{zE}_{\mathrm{a}}, \mathrm{E}_{\mathrm{c}}=(1-z) \mathrm{E}_{\mathrm{a}}$
The range of admissible values $z_{-}\left(m_{\text {eff }}\right)<z<z_{+}\left(m_{\text {eff }}\right)$ is defined by the effective mass

$$
Z_{ \pm}=1 / 2+\left\{1+\left(m_{\text {effb }}{ }^{2}-m_{\text {effc }}{ }^{2}\right) / m_{\text {effa }}{ }^{2} \pm\left|\mathbf{p}_{\mathbf{a}}\right| / E_{a} \cdot \sqrt{\left.\left(m_{\text {effa }}{ }^{2}-m_{\text {effb }}{ }^{2}-m_{\text {effc }}{ }^{2}\right)^{2}-4 m_{\text {effc }}^{2} m_{\text {effb }}{ }^{2}\right)} / m_{\text {effa }}{ }^{2}\right\}
$$

The range of a opening angle: $\Theta_{-}\left(z_{-}\right)<\Theta<\Theta_{+}\left(z_{+}\right)$is defined by the values Z_{+}, Z_{-}

$$
\theta_{ \pm} \approx 1 /\left(\sqrt{\left.z_{a \pm}\left(1-z_{a \pm}\right)\right)} \cdot m_{\text {aeff }} / E_{a}\right.
$$

$>$ The opening angles are ordered: $\Theta_{b}, \Theta_{c}<\Theta_{a}$ (opening angle of a daughter parton can't be more parent)

branching

Scenario of parton shower - Triad Cantor Set

$>$ Outgoing from hard process parton branch $\mathrm{a} \rightarrow \mathrm{bc}$
$\theta_{ \pm}-$admissible opening angle Black rectangles -permissible parts η
$>\quad$ Branching process is repeated

$$
\begin{gathered}
\text { Power Law: } \\
\mathbf{N}_{\mathbf{i}}^{\text {part }} / \mathbf{N}^{\text {part }}(\Delta \eta) \sim(\Delta \eta)^{\text {d }} \\
\mathbf{d}=\mathbf{D}_{\mathrm{F}}=\ln 2 / \ln 3 \approx \mathbf{0 . 6 3 0 9 3}
\end{gathered}
$$

The shower is regular, binary cascade with permissible 1/3 η parts
> 5 level (32 partons) of this cascade are used to test of the Box Counting method to define the fractal dimension
$>$ Pseudorapidity distribution $1 / \mathrm{N} \cdot \mathrm{dN} / \mathrm{d} \eta$ of final partons is analyzed
> Pseudorapidity is chosen randomly from permissible range for each final parton

Restoration accuracy of D_{F} vs. Set of bin widths

$>$ All presented graphics have a plateau. The plateau corresponds to distributions in which the maximum bin content is 1 parton.
Δ Set of bins $\left(M_{1}=2, M_{i+1}=M_{i}+3, M_{334}=1001\right)$ is redundant.
In it specifies numerous intermediate plateau
\Rightarrow Set of bins $M_{i+1}=2^{i}$ defines the value of D_{F} with $\operatorname{Err}=10.8 \%$
Set of bins $M_{i+1}=3^{i}$ is an optimum one. It provides exact restoration of D_{F} and infinitely small $\chi 2 / N$
$>$ The optimum set is connected with the law of cascade formation

$$
M_{i}=(1 / 3)^{i} \quad \Delta \eta=(1 / 3)^{i} \eta \text { (Triad Cantor Set) }
$$

P-adic Coverage Method

Read out data - $\left\{\eta_{i}\right\}$ of partons
Construction of pseudorapidity distributions for different set of bins.
In each set the number of bins are changed as degree of basis $\mathbf{P}\left(M_{i}=P^{i-1}\right)$.
These distributions are various \mathbf{P}-adic Coverages of the pseudorapidity space.
Counting the number of binary cascade level $\mathrm{N}_{\text {lev }}=\mathrm{LOG}_{2} \mathrm{~N}^{\text {part, }}$, $\mathrm{N}^{\text {part }}$ is number of partons
Plotting the graph $\ln N(M)$ vs. In M (number of points $N_{\text {lev }}+1$ in graph)
$>\quad$ Determination of the values of $\chi^{2}(\mathrm{P})$ and the slope parameter $\mathrm{b}(\mathrm{P})$
$>\quad$ Determination of the optimum set of bins. It corresponds to $\chi^{2}(P)<\chi_{1 i m}{ }^{2}$
The optimum set of bins $M(P)$ defines:

1. The fractal dimension $D_{F}=b(P)$ with maximum accuracy.
2. Permissible parts in η-space, $1 / k=1 / P)$.

Choice $\chi_{\mathrm{lim}^{2}}{ }^{2}=10^{-5}$
$>$ The dependence of $\chi 2(\mathrm{P})$ for regular binary cascade with permissible $1 / 8 \eta$-part has a local and global minimum
$>$ The global minimum $\chi 2<10^{-21}$ corresponds to the optimum set
$>$ The value of $\chi_{\text {lim }^{2}}=10^{-5}$ uniquely defines the optimum set of bins for binary cascade with different permissible $1 / k \quad(k=3 \div 20)$ parts η,

Binary cascades with permissible $1 / k$ parts of η

The Cascades with permissible $1 / 5$ parts of η The Fractal dimensions of both cascades are the same $D_{F}=\ln 2 / \ln 5$

Different scenarios of parton cascade correspond to different admissible range of the opening angle

Values of D_{F} and permissible parts $1 / k$ of η are not enough and
the structure of filled space (η-space) is necessary for
restoration of law of the cascade formation

Structure of the filled space

Record of level structures (Structure arrays for each bin widths in the set)
Determination of regularity for each level (structures within level must be self-similar)
Determination of cascade regularity (each level must be regular and level structures must be self-similar)

For regular cascade the filled parts of space are defined by the arrays Structure They are self-similar i.e. they are same structure at different scales

Level structure of regular binary cascade with filled 1 and 3 part of η

The 1 -level structure is defined by the one array. It consists of 3 elements (101). This array reflects the structure of the filled space.

The 2-level structure consists of two arrays. Each of arrays corresponds to structure of the filled parts of the first level.

Structure Arrays

1:
2:
3 :
4 : (101) (101) (101) (101) (101) (101) (101) (101)

Analysis of the arrays Structure

Restored cascade structure

Define filled parts η space at each cascade level

Complex cascades ($1 \rightarrow \mathrm{~N}$ partons) - N -ary cascades

Number of partons in the final state doesn't allow to determine number of level and number of partons at branching

Reconstruction of complex cascade (4-ary)

Dependences In N on In M for ten sets of bins $\left(M_{i}=P^{i-1}, p=1 \ldots 10\right)$ have a plateau. Existence of plateau is connected to redundancy of considered levels.
\Rightarrow Region without plateau is fitted $\left(N_{\text {fit }}\right)$, points $\Delta N_{i}=\left(N_{i}-N_{i-1}\right)=0, i=N \ldots 0$ is excluded
$>$ Value $\chi^{2}(P)<10^{-5}$ correspond the set of bins $M: M_{i}=7^{i-1}$. It set defines

1. Fractal dimension D_{F} with maximum accuracy
2. Level structure (filled parts of space)
3. Number of cascade level $\left(\mathrm{N}_{\mathrm{lev}}=\mathrm{N}_{\mathrm{fit}}-1\right)$
4. Number of partons at branching $\mathrm{N}_{\text {part }}$
(number of non-zero element in the array Structure for 1 -level)

P-adic Coverage Method - I

Read out data - $\left\{\eta_{i}\right\}$ of partons
Construction of pseudorapidity distributions for different set of bins.
M : $\mathrm{M}_{\mathrm{i}}=\mathrm{P}^{\mathrm{i}-1}$ (P-adic Coverage)
Counting the number of binary cascade level $\mathrm{N}_{\text {lev }}=\mathrm{LOG}_{2} \mathrm{~N}^{\text {part }}$, $\mathrm{N}^{\text {part }}$ - is number of partons Plotting the graph In $N(M)$ vs. In M (number of points $N_{\text {lev }}+1$ in graph)
Determination of the values of $\chi^{2}(P)$ and the slope parameter $\mathrm{b}(\mathrm{P})$ (region without plateau)
Determination of the optimum set of number of bins. It corresponds to $\chi^{2}(P)<10^{-5}$
The optimum set of bins $M(P)$ defines:

1. The fractal dimension $D_{F}=b(P)$ with maximum accuracy.
2. Level structure (filled parts of space)
3. Number of cascade level $\left(\mathrm{N}_{\mathrm{lev}}=\mathrm{N}_{\text {fit }}-1\right)$
4. Number of partons at branching $N_{\text {part }}=N\left(M_{2}\right)$

Summary

$>$ Box counting method was analyzed
$>$ It was established existence the optimum set of bins. It provides exact restoration of D_{F} and is connected with the law of cascade formation.
> The P-adic Coverage Method of fractal analysis was proposed. It was used for regular cascade with permissible $1 / \mathrm{N}$ parts η This method allows to define:

- Fractal dimension $\mathrm{D}_{\mathrm{F}}=\mathrm{b}(\mathrm{P})$ with maximum accuracy
- Cascade structure (filled parts of space)
- Number of cascade level
- Number of partons at branching

Thank You for attention

