

Study of the proton structure via \overline{p} p annihilation at $\overline{P}ANDA$

<u>J. Boucher</u>, M. Gumberidze, T. Hennino, R. Kunne, D. Marchand, S. Ong, B. Ramstein, E. Tomasi-Gustafsson, J. Van de Wiele

Baldin Seminar, Dubna, Russia

10/04/2010

Outline

- Motivations: proton electromagnetic form factors
- PANDA detector
- > $\overline{p}p \rightarrow e^+e^-$ channel
 - > Signal efficiency and background rejection
- > $\overline{p}p$ → $\pi^0e^+e^-$ channel
 - Models, first results
- Conclusion & future plans

Proton electromagnetic form factors

Space-like SL Normalization • $G_{F}^{p}(0)=1$ Time-like TL • $G_M^{p}(0) = \mu_0$ e⁺+e⁻ + X • $G_{E}^{p}(4m_{p}^{2}) = G_{M}^{p}(4m_{p}^{2})$ q²>0 nphysical **Asymptotics** • $|G_{E,M}(q^2)| \sim (q^2)^{-2}$ d+dComplex FFs **Real FFs** For $q^2 \rightarrow \pm \infty$ • $\frac{G_E}{G_M}$ ~ real constant $\frac{1}{3.52 \, (\text{GeV/c})^2} \, p + p \leftrightarrow e^+ + e^- q^2$ $e+p \rightarrow e+p$ 0 • $\lim_{q^2 \to -\infty} G_{E,M}^{SL}(q^2) = \lim_{q^2 \to +\infty} G_{E,M}^{TL}(q^2)$ (Phragmén-Lindelhöf theorem) Dispersion relation

$$G(q^{2}) = \frac{1}{\pi} \left[\int_{4m_{\pi}^{2}}^{4m_{p}^{2}} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} + \int_{4m_{p}^{2}}^{\infty} \frac{\operatorname{Im} G(s) ds}{s - q^{2}} \right]$$
Precise data (SL)
No data (TL)
Low quality data (TL)
Jérôme Boucher, IPNO

TL:• G_{eff}^{TL} extracted under the assumption $|G_E^{TL}| = |G_M^{TL}|$. •Few data available at high q². •No individual determination of $|G_E^{TL}|$ and $|G_M^{TL}|$.

TL:• G_{eff}^{TL} extracted under the assumption $|G_E^{TL}| = |G_M^{TL}|$. •Few data available at high q². •No individual determination of $|G_E^{TL}|$ and $|G_M^{TL}|$.

• $| \mathbf{G}_{eff}^{TL} | \approx |\mathbf{G}_{M}^{TL}| \approx 2 | \mathbf{G}_{M}^{SL} |$ \square asymptotic regime not reached

TL:• G_{eff}^{TL} extracted under the assumption $|G_E^{TL}| = |G_M^{TL}|$. •Few data available at high q². •No individual determination of $|G_E^{TL}|$ and $|G_M^{TL}|$.

• $| \mathbf{G}_{eff}^{TL} | \approx |\mathbf{G}_{M}^{TL}| \approx 2 | \mathbf{G}_{M}^{SL} |$ \square asymptotic regime not reached

TL:• G_{eff}^{TL} extracted under the assumption $|G_E^{TL}| = |G_M^{TL}|$. •Few data available at high q². •No individual determination of $|G_E^{TL}|$ and $|G_M^{TL}|$.

• | G_{eff}^{TL} | ≈ $|G_M^{TL}|$ ≈ 2 | G_M^{SL} | → asymptotic regime not reached

SL:•Contradictory results from the Rosenbluth and the recoil proton polarization methods.

FAIR, Facility for Antiproton and Ion Research, Darmstadt, Germany

PANDA

GSI, Darmstadt

- heavy ion physics

- nuclear structure
- atomic and plasma physics

FAIR, Darmstadt: New facility

- heavy ion physics & nuclear structure
- atomic, plasma and applied physics
- higher intensities & energies
- antiproton physics

PANDA detector

Detector requirements:

- nearly 4π solid angle;
- high rate capability: 2 10⁷ interactions/s;
- efficient event selection;
- good momentum resolution Δp/p ≈ 1% at 1 GeV/c; 10/04/2010, Baldin, Dubna

- vertex resolution < 100 μ m for K⁰, Σ , Λ , (D[±], ct \approx 317 μ m);
- good PID (γ, e, μ, π, K, p): dE/dx, Cerenkov, calorimetry, muons;
- γ detection: few $MeV < E_{\gamma} < 10$ GeV. Jérôme Boucher, IPNO 11

Sensitivity to | G_E | and | G_M |

General expression for the differential cross section: $d^n \sigma \propto |M|^2 \propto L^{\mu\nu} H_{\mu\nu}(s, G_E, G_M)$

10/04/2010, Baldin, Dubna

Jérôme Boucher, IPNO

Background suppression

Background reactions

Dominated by 2-charged body reactions (e.g.: $\overline{p}p$, $\pi^+\pi^-$, $\mu^+\mu^-$, K^+K^-)

Most difficult background to suppress is $\pi^+\pi^-$,

- → PID (Calorimeters, dE/dx, DIRC),
- → Kinematical correlation $p=f(\theta)$.

Background suppression factor is at least of the order of 10⁹ taking into account PID & kinematic fit !!

M. Sudol et al., Eur. Phys. J. A44, 373-384, 2010

q² [GeV/c]²	π ⁺ π ⁻ contamination
8.2	0.004 %
12.9	0.017 %
16.7	0.061 %

Expected precision with PANDA

10/04/2010, Baldin, Dubna

Jérôme Boucher. IPNO

15

Form factors in the unphysical region

Feasability

Starting point:

C. Adamuščín, E.A. Kuraev, E. Tomasi-Gustafsson, F. Maas, Phys. Rev. C 75, 045205, 2007

Cross sections (s=8.21GeV²): $\sigma(\bar{p}p \rightarrow \pi^{0}e^{+}e^{-}): \sigma(\bar{p}p \rightarrow \pi \pi \pi) = 1:600$ (Adamuščín with VMD) (data)

From feasability study of $(\bar{p}p \rightarrow e^+e^-)$: $\sigma(\bar{p}p \rightarrow e^+e^-) : \sigma(\bar{p}p \rightarrow \pi \pi) = 1 : 10^6$

(almost independent on energy)

Need to constrain model by data

Jérôme Boucher, IPNO

Calculation of
$$\overline{p}p \rightarrow \pi^{0}e^{+}e^{-}$$

 $d^{n}\sigma \propto |M|^{2} \propto \frac{1}{q^{4}}L^{\mu\nu}H_{\mu\nu}(s,q^{2},\theta_{\pi^{0}},G_{E},G_{M})$
In the γ^{*} rest frame
 $L^{\mu\nu}H_{\mu\nu} = 4e^{2}\frac{q^{2}}{2}(H_{1} + H_{22} + H_{33})$
 $-8e^{2}p_{e}^{2}(H_{1})\sin^{2}\theta_{e}\cos^{2}\varphi_{e} + 2H_{12}\sin^{2}\theta_{e}\sin\varphi_{e}\cos\varphi_{e}$
 $p \rightarrow \chi^{*} \rightarrow e^{-} + 2H_{13}\sin\theta_{e}\cos\theta_{e}\cos\varphi_{e} + H_{22}\sin^{2}\theta_{e}\sin^{2}\varphi_{e}$
 $p \rightarrow \chi^{*} \rightarrow e^{-} + 2H_{23}\sin\theta_{e}\cos\theta_{e}\sin\varphi_{e} + H_{33}\cos^{2}\theta_{e})$
 $p \rightarrow \chi^{*} \rightarrow e^{-} + 2H_{23}\sin\theta_{e}\cos\theta_{e}\sin\varphi_{e} + H_{33}\cos^{2}\theta_{e})$
Calculation by
J. Van de Wiele

10/04/2010, Baldin, Dubna

Dependence on beam kinetic energy

$H_{\mu\nu}$ versus fitted values

- T=1GeV
- q²=2.0 ± 0.25 - 172 076 events
- Δθ_{π0}=2°
- For each $\Delta \theta_{\pi^0}$:
 - $d^5\sigma$ is generated with well defined $H_{\mu\nu}$ (θ_e , φ_e :10°/bin)
 - $d^5\sigma$ is fitted \rightarrow experimental determination of $H_{\mu\nu}$

$H_{\mu\nu}$ versus fitted values

- T=1GeV
- q²=2.0 ± 0.25 172 076 events
- Δθ_{π0}=2°
- For each $\Delta \theta_{\pi^0}$:
 - $d^5\sigma$ is generated with well defined $H_{\mu\nu}$ (θ_e , φ_e :10°/bin)
 - $d^5\sigma$ is fitted \rightarrow experimental determination of $H_{\mu\nu}$

H_{uv} versus fitted values

- T=1GeV
- 172 076 events • $q^2 = 2.0 \pm 0.25$
- Δθ_{π0}=2°
- For each $\Delta \theta_{\pi 0}$:
 - $d^5\sigma$ is generated with well defined $H_{\mu\nu}$ (θ_e , φ_e :10°/bin)
 - $d^5\sigma$ is fitted \rightarrow experimental determination of $H_{\mu\nu}$

Direct access to $H_{\mu\nu}$ via the angular distribution

and $cos(\phi_{F}-\phi_{M})$

Conclusions and outlook

- PANDA will improve results on $|G_E^{TL}|$ and $|G_M^{TL}|$ by measuring the $\overline{p}p \rightarrow e^+e^-$ angular distributions.
- Realistic model for $\overline{p}p \rightarrow \pi^0 e^+e^-$ in the unphysical region has been developped.
- Access to the hadronic tensors $(H_{\mu\nu})$ is possible via the e⁺ (e⁻) angular distribution.
 - \rightarrow |G_E|/|G_M| and cos(ϕ_{E} - ϕ_{M}).
- Feasability of $\overline{p}p \rightarrow \pi^0 e^+e^-$ and background suppression under investigation.

• See E. Tomasi-Gustafsson talk (s-channel)

Detectors for charged particle identification

Tracking detectors

PANDA calorimeters

General information of the simulation

q²	e⁺e⁻	π⁺π⁻	π ⁰ π ⁰
[(GeV/c) ²]			
5.4 7.21 8.21 12.9 13.9 16.7 22.3	$\begin{array}{rrrr} 4 & 10^6 \\ 4 & 10^6 \\ 4 & 10^6 \\ 4 & 10^6 \\ 4 & 10^6 \\ 4 & 10^6 \\ 4 & 10^6 \end{array}$	1 10 ⁸ - 1 10 ⁸ - 2 10 ⁸ -	3 10 ⁶ - 3 10 ⁶ - 3 10 ⁶ -

Signal has been simulated under 3 assumptions:

•
$$|G_{E}| = 0$$

• $|G_{E}| = |G_{M}|$
• $|G_{F}| = 3 |G_{M}|$

3 scenarios for the π^0 decay were taken into account

- π⁰π⁰ -> γγ γγ
- π⁰π⁰ -> γγ γe⁺e⁻

 γ – convert in the detector material

→ Full scale simulation including GEANT4 and detector digitalization ,

 \rightarrow Both the signal $\overline{p} \ p \rightarrow e^+ e^-$ and main background channel $\overline{p} \ p \rightarrow \pi^+ \pi^-$ analysed,

→ Detailed analysis for the PID response and also kinematic constraints were studied.

Hadronic background channel suppression

Background suppression factor is at least of the order of 10⁹ taking into account PID & kinematic fit !! **Definition of the PID cuts:** (particle probability of being an electron)

Very Loose	: 19.9%
Loose	: 85%
Tight	: 99%
Very Tight	: 99.8 %

PID from 5 detectors: EMC, STT, DIRC, MVD and MUO

Background suppression after Very Tight PID cuts:

- 8.2 $(\text{GeV/c})^2$: 2/10⁸
- $12.9 \, (\text{GeV/c})^2 : 5/10^8$
- 16.7 $(\text{GeV/c})^2$: 6/10⁸

Additional factor ~100 applying the kinematic fit

Electron reconstruction efficiency

e⁺e⁻ signal:
→ efficiency about 35 % at cosθ_{CM}= 0 after all cuts (Very Tight and CL*)
→ decreases at forward/backward angles (combined effect with acceptance)
more pronounced for the high q²
→ still on average a factor 2 higher than BABAR experiment (ε ~ 17 %)

10/04/2010, Baldin, Dubna

Jérôme Boucher, IPNO

2-dimensional fits

Default parameters:

- Chi-square method
- Empty bins are ignored
- Error = $\sqrt{(bin content)}$

Options:

- W: Set weight to 1 for non empty bins
- WW: Set weight to 1 for all bins
- I: Integral of function instead of value at bin center

Form factors and unphysical region

Iachello's Form Factors

$H_{\mu\nu}$ versus fitted values

• T=1GeV

- 172 076 events
- q²=2.0 ± 0.25_
- For each θ_{π^0} (θ_e , φ_e : 10° per bin):
 - $d^5\sigma$ is generated

Direct access to H_{ii} via the angular distribution

$H_{\mu\nu}$ versus fitted values

Direct access to H_{ii} via the angular distribution

10/04/2010, Baldin, Dubna

Jérôme Boucher, IPNO