NOVEL ACCELERATOR TECHNOLOGIES FOR RADIATION THERAPY S.Akulinichev Institute for Nuclear Research of RAS (Moscow and Troitsk)

Some materials were kindly provided by
L.Kravchuk (INR), G.Klenov and V.Khoroshkov (ITEP).

Design of linac of INR

injector

Beam channels

Initial part of linac (100 МэВ)

20 MeV
49 MeV
74 MeV
94 MeV
100 MeV

\square
\square Tank 4 Tank 5

5 drift tube cavities
Frequency - 198.2 MHz
Output energy - 100 MeV

Main part of linac (100-600 MeV)

Accelerating resonators

Gallery of HF generators

Beam extraction (160 MeV)

Isotope production facility

Complex of radiotherapy of INR

Main task:

treatment of tumors by proton therapy and boost
radiotherapy (combined with photon and x-ray irradiation)

Basic equipment:

- proton linac with optimal beam parameters proton energy 74-247 MeV, frequency of micropulses - up to 100 Hz , duration of micropulses up to 100 mcsec (no analogy in Russia!)
- medical electron accelerator SL-75-5- MT (electron energy 6 MeV).

Additional equipment:

- x-ray radiotherapy,
- CT (Toshiba Aquilion LB-16),
- ambulatory for 40 patients per day,

Radiological equipment of INR

Complex of proton therapy of INR

\square ambulatoty
\square
X-ray zone
Radiotherapy zone
Technical supply zone

Proton therapy

Electron accelerat ϕ

Proton beam formation system (April 2010 r.)

- 1- vacuum channel,
- 2 - Aluminum foil,
- 3 - carbon collimator (hole of 10 mm),
- 4- primary scatterer,
- 5- protection wall,
- 6- secondary scatterer,
- 7-beam monitor (ion camber 150 mm),
- 8-brass filter,
- 9- individual block (bolus and collimator),
- 10 - isocenter of treatment room
- (dimensions in mm).

2077

Detectors and monitor equipment

- 3D Pantom Wellhofer WP600, with camera IC-10 on the patient desk.
- Monitor IC PTW 786 on the optical desk (150mm).
- Plane-parallel IC PPC05.

Measurements of proton depth-dose distributions

- Efficacy of charge registration (160 MeV),
- Bragg peak for 209 MeV protons

Beam profiles (160 MeV)

Conclusion: the beam fulfill treatment requirements

(homogeneity within $\pm 5 \%$)

- Beam profiles after primary scatterer

Горизонтальные профили на разных глубинах

The conventional radiotherapy treatment in INR has the highest quality in Moscow region
(about 100 patients cured in 2010)

X-ray radiotherapy of superficial malformations

The most detailed x-ray dose-depth distribution atlas in Russia was done in INR.

Cyclic accelerators for radiotherapy (with protons and carbon ions)

- Synchrotrons for carbon ions are produced by several firms (Hitachi, Mitsubishi, Siemens, GSI etc).
- New synchrotron for Botkin hospital in Moscow is being designed by MRTI and ITEP.
- Physical Institute of RAS developed new compact synchrotron- Injector 1.2 Mev, mean intensity about 0.1 nA , diameter less then 6 m .
- JINR is planning to develop superconducting synchrotron for carbon.
- JINR and IBA are developing new superconducting cyclotron.
- IHEP in Protvino is developing a model of accelerator chain for radiotherapy.
- INP in Novosibirsk suggests to use an accelerator cascade with electron cooling in the synchrotron circle.

Synchrotrons of Hitachi

PULSAR ${ }^{\text {тм }} 7 \mathrm{MeV}$ Linear Accelerator:

- injector for synchrotrons, - effective PET isotope production

- The Drift Tube Linac is a series of permanent magnets in an RF field
- The magnets focus the beam and the RF accelerates the protons to 7 Mev where they exit the accelerator

Mobile PULSAR ${ }^{\text {TM }}$ PET Isotope Laboratory

F18 Production with Pulsar

- 1 Curie (37 GBq) in a one hour run
- Less than $1 / 2 \mathrm{ml}$ of water per run
- 10 minutes between runs
- Fully automatic target operation

Proton synchrotron of Lebedev PI RAS

1. Injector; 2. Accelerator ring. 3. Scanning magnet;
$E=300 \mathrm{MeV}$
Irradiation at stay position

Intensity =
$2.10^{8} p / c$
Injection energy=
1.2 MeV

Active dose delivery system

Superconducting cyclotron JINR and IBA

(weight 700 т, diameter 6,3м)
Fix energy; HF (75 МГц, $4^{\text {th }}$ harmonic)
Accelerated particles: $Q / M=1 / 2 \Rightarrow 400 \mathrm{MeV} / \mathrm{n}$ (p-260 MэВ)
$\mathrm{H}^{2+},{ }^{4} \mathrm{He}^{2+}$, $\left({ }^{6} \mathrm{Li}^{3+}\right),\left({ }^{10} \mathrm{~B}^{5+}\right),{ }^{12} \mathrm{C}^{6+}$
Superconducting coil ($\mathrm{B}_{\text {max }} / \mathrm{B}_{\min }=4.5 / 2.5 \mathrm{~T}$)
External axial injection (spiral inflector)
Ejection H^{2+} ions - through foil, other ions by means electrostatic deflector (140 кV/см)

Institute High Energy Physics Injector l-100; Buster 1 GeV

Proton synchrotron, two Gantries and treatment room with fixed, horizontal beams for two treatments units

- Lasers of new generation (fenta lasers) can be used for acceleration of protons and carbon ions. Some problems have to be resolved:
- Capacity of lasers should be increased,
- Energy spectrum must be defined,
- Dosimetry and patient protection must be provided.

Moving superconducting cyclotron

New generation of acceleratorsFFAG

Table 1: Specification of the FFAG complex at KUR

	Injector	Booster	Main
Focusing	Spiral	Radial	Radial
Acceleration	Induction	RF	RF
k	2	2.45	7.5
$\mathrm{E}_{\text {inj }}$	100 keV	2.5 MeV	20 MeV
$\mathrm{E}_{\text {ext }}$	2.5 MeV	20 MeV	150 MeV
$p_{\text {ext }} / p_{\text {inj }}$	5.00	2.84	2.83
$r_{\text {inj }}$	0.60 m	1.27 m	4.54 m
$r_{\text {ext }}$	0.99 m	1.86 m	5.12 m

Accelerators with fixed magnetic field and variable focusing FFAG (Japan, USA)

Radiological center in Munich

What is the most effective method of 3D dose formation?

- Possible dose formation systems (M.Kats, ITEP)

Thank you very much!

