XX International Baldin Seminar on High Energy Physics Problems

The difference in inclusive spectra of proton-proton and protonantiproton collisions at sqrt(s)=900 GeV

V.A. Abramovsky
N.V. Radchenko

Novgorod State University
Russia

Inclusive cross sections and multiplicity distributions are different for pp and ppbar

Pomeranchuk theorem:
total cross sections
differential elastic cross sections
elastic cross sections
the same
for pp and ppbar

It is also generally accepted that inclusive cross sections and multiplicity distributions are the same for $p p$ and ppbar.

Low Constituents Number Model (LCNM)

1. On the first step before the collision there is small number of constituents in initial hadrons. In every hadron this is component either with only valence quarks or with valence quarks and one additional gluon.
2. On the second step the hadrons interaction is carried out by gluon exchange between the valence quarks and initial gluons. The hadrons gain the color charge.
3. On the third step after interaction the colored hadrons move apart and when the distance between them becomes larger than the confinement radius, the lines of color electric field gather into the string. This string breaks out into secondary hadrons.
(Abramovsky, Kancheli 1980, Abramovsky, Radchenko 2009)

Three types of inelastic subprocesses

Results in LCNM

Pseudorapidity density at LHC energies

BALDIN ISHEPP XX

The importance of inclusive cross sections

- From the LCNM it follows, that multiplicity distributions are different for $p p$ and ppbar because of subprocess with three quark strings in ppbar (blue line).
- Three quark strings produce events with high multiplicity in tail of distribution.
- In order to make the difference more visible, we have to use observable $n \cdot P_{n}$ instead of P_{n}
- $n \cdot P_{n}$ is measured independently of P_{n} in inclusive measurements

Inclusive cross sections in events with fixed number of particles

Topological inclusive cross section of one charged particle production

$$
(2 \pi)^{3} 2 E \frac{d^{3} \sigma_{n}^{\text {incl }}}{d^{3} p}=\frac{1}{(n-1)!} \sum_{m=0}^{\infty} \frac{1}{m!} \int d \tau_{n-1+m}\left|A_{2 \rightarrow n+m}\right|^{2}
$$

Total inclusive cross section and its normalization
$(2 \pi)^{3} 2 E \frac{d^{3} \sigma^{\text {incl }}}{d^{3} p}=\sum_{n=0}^{\infty}(2 \pi)^{3} 2 E \frac{d^{3} \sigma_{n}^{\text {incl }}}{d^{3} p} \quad \int d^{3} p \frac{d^{3} \sigma^{\text {incl }}}{d^{3} p}=\langle n\rangle \sigma^{n s d}$
Normalization of topological inclusive cross section

$$
\int d^{3} p \frac{d^{3} \sigma_{n}^{i n c l}}{d^{3} p}=n \sigma_{n} \quad \sigma_{n}=\frac{1}{n!} \sum_{m=0}^{\infty} \frac{1}{m!} \int d \tau_{n+m}\left|A_{2 \rightarrow n+m}\right|^{2}
$$

$$
\frac{1}{\sigma^{n s d}} \int d^{3} p \frac{d^{3} \sigma_{n}^{i n c l}}{d^{3} p}=n \frac{\sigma_{n}}{\sigma^{n s d}}=n P_{n}
$$

Inclusive cross sections in bins

UA5 Coll. gave data in 9 bins of charged multiplicities:
$2 \leq n \leq 10,12 \leq n \leq 20, \ldots 72 \leq n \leq 80$ and $n \geq 82$.

We define inclusive cross section in this bins

$$
\begin{gathered}
\frac{d^{3} \sigma^{(1) \text { incl }}}{d^{3} p}=\sum_{n=2}^{10} \frac{d^{3} \sigma_{n}^{\text {incl }}}{d^{3} p}, \quad \frac{d^{3} \sigma^{(2) \text { incl }}}{d^{3} p}=\sum_{n=12}^{20} \frac{d^{3} \sigma_{n}^{\text {incl }}}{d^{3} p}, \ldots \quad \frac{d^{3} \sigma^{(9) \text { incl }}}{d^{3} p}=\sum_{n=82}^{\infty} \frac{d^{3} \sigma_{n}^{\text {incl }}}{d^{3} p}, \Rightarrow \\
\sum_{i=1}^{9} \frac{d^{3} \sigma^{(i) \text { incl }}}{d^{3} p}=\frac{d^{3} \sigma^{\text {incl }}}{d^{3} p}
\end{gathered}
$$

Inclusive cross sections in bins are normalized as follows
$\int d^{3} p \frac{d^{3} \sigma^{(i) i n c l}}{d^{3} p}=\sigma^{n s d} \sum_{n \text { inbin }} n P_{n}=\bar{n}^{(i)} \sigma^{n s d}$

Difference in inclusive cross sections of $p p$ and pbarp

$$
\begin{align*}
& \int d^{3} p \frac{d^{3} \sigma_{p p}^{(i) n c l}}{d^{3} p}=\int d \eta d^{2} p_{\perp} \frac{d^{3} \sigma_{p p}^{(i) \text { nel }}}{d \eta d^{2} p_{\perp}}=\int d \eta \frac{d \sigma_{p p}^{(i) \text { incl }}}{d \eta}=\bar{n}_{p p}^{(i)} \sigma^{n s d} \tag{1}\\
& \int d^{3} p \frac{d^{3} \sigma_{p \bar{p}}^{(i) n c l}}{d^{3} p}=\int d \eta d^{2} p_{\perp} \frac{d^{3} \sigma_{p \bar{p}}^{(i) n c l}}{d \eta d^{2} p_{\perp}}=\int d \eta \frac{d \sigma_{p p}^{(i) i n c l}}{d \eta}=\bar{n}_{p p}^{(i)} \sigma^{n s d} \tag{2}\\
& \frac{d \sigma^{(i)} \text { ncl }}{d \eta}=\int d^{2} p_{\perp} \frac{d^{3} \sigma^{(i)} \text { incl }}{d \eta d^{2} p_{\perp}}
\end{align*}
$$

Ratio of (1) to (2) gives

$$
\begin{equation*}
\int d \eta \frac{d \sigma_{p p}^{(i) i n c l}}{d \eta}=\frac{\bar{n}_{p p}^{(i)}}{\bar{n}_{p \bar{p}}^{(i)}} \int d \eta \frac{d \sigma_{p \bar{p}}^{(i) i n c l}}{d \eta} \tag{3}
\end{equation*}
$$

Solution of the integral equation (3) (perhaps, the only solution)

$$
\begin{equation*}
\frac{d \sigma_{p p}^{(i) i n c l}}{d \eta}=\frac{\bar{n}_{p p}^{(i)}}{\bar{n}_{p \bar{p}}^{(i)}} \frac{d \sigma_{p \bar{p}}^{(i) i n c l}}{d \eta} \tag{4}
\end{equation*}
$$

Inclusive cross sections in different bins

	$\bar{n}_{p \bar{p}}^{(i)} / \bar{n}_{p p}^{(i)}$
$2 \leq n \leq 10$	0.76 ± 0.01
$12 \leq n \leq 20$	0.86 ± 0.01
$22 \leq n \leq 30$	0.99 ± 0.01
$32 \leq n \leq 40$	1.09 ± 0.01
$42 \leq n \leq 50$	1.10 ± 0.01
$52 \leq n \leq 60$	1.18 ± 0.01
$62 \leq n \leq 70$	1.35 ± 0.02
$72 \leq n \leq 80$	1.45 ± 0.02
$n \geq 82$	1.26 ± 0.02

Inclusive cross sections summed over all bins

We obtained the numerical value of relation

$$
\frac{d \sigma_{p \bar{\eta}}^{i n c l}}{d \eta} / \frac{d \sigma_{p p}^{i n c l}}{d \eta}
$$

by summing over all nine bins of multiplicity.
For $|\eta|<2.5$

$$
\frac{d \sigma_{p \bar{p}}^{i n c l}}{d \eta} / \frac{d \sigma_{p p}^{i n c l}}{d \eta}=1.12 \pm 0.01
$$

This result will be used on the next slides.

Inclusive cross section with transverse momentum

From the AGK cancellation rules it follows the factorization of transverse dependence in inclusive cross section.

$$
\frac{1}{2 \pi p_{\perp}} \frac{d^{2} \sigma^{i n c l}}{d \eta d p_{\perp}}=f\left(p_{\perp}\right) \frac{d \sigma^{i n c l}}{d \eta}
$$

Returning to formulas (1) and (2) we can write down

$$
\frac{d^{3} \sigma_{p p}^{(i) i n c l}}{d \eta d^{2} p_{\perp}}=\frac{\bar{n}_{p \bar{p}}^{(i)}}{\bar{n}_{p p}^{(i)}} \frac{d^{3} \sigma_{p \bar{p}}^{(i) i n c l}}{d \eta d^{2} p_{\perp}}
$$

From this relation it can strictly be proved that $f_{p p}\left(p_{\perp}\right)=f_{p \bar{p}}\left(p_{\perp}\right)$ so we can obtain

$$
\frac{1}{2 \pi p_{\perp}} \frac{d^{2} \sigma_{p \bar{p}}^{i n c l}}{d \eta d p_{\perp}} / \frac{1}{2 \pi p_{\perp}} \frac{d^{2} \sigma_{p p}^{i n c l}}{d \eta d p_{\perp}}=\frac{d \sigma_{p \bar{p}}^{i n c l}}{d \eta} / \frac{d \sigma_{p p}^{\text {incl }}}{d \eta}
$$

Experimental evidences of difference in $p p$ and ppbar

ATLAS Coll.
arXiv:1003.3124v2

ALICE Coll.
arXiv:1007.0719v3

Inclusive cross sections for events with low multiplicities

In the paper of 2009 (arXiv:0912.1041v1, Abramovsky, Radchenko) it was predicted that inclusive cross sections of ppbar are 12\% higher than pp. In 2010 ATLAS and ALICE Coll. showed that the difference is about 20%.
ATLAS and ALICE explained the difference by "double-arm scintillator trigger requirement used to collect the UA1 data, which rejected events with low chargedparticle multiplicities". But contribution from such events is less than 2 mb , and can be neglected in total cross section of about 160 mb .

Conclusion

- We think that ATLAS Coll. discovered a new effect - the difference in multiparticle production in $p p$ and ppbar interactions. ALICE Coll. confirmed this effect.
- We propose to experimentalists to measure inclusive cross section in bins with high multiplicities, where the difference will be the most evident.

