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Principles & Symmetries

Motivation: Search for phenomenological description of
inclusive cross sections aiming to grasp main principles which
influence the particle production at high energies.

Self-similarity.
Locality.
Fractality.

There exists special symmetry inherent to them.
Symmetry with respect to structural degrees of freedom
(space-time structural relativity).
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Self-similarity of inclusive reactions
M,+M,~>m+X

The self-similarity of inclusive reactions concerns similarity of hadron
interactions at constituent level. It is connected with dropping of certain
parameters out of physical description of inclusive distributions.

The reduction is achieved by grouping of suitable parameters into an adequate,
physically meaningful, but still simple self-similarity variable z.

Parameters of inclusive reactions entering into the variable z are:
1. Reaction characteristics (A, A,, P,, P,)
Particle characteristics (m, p, 0)

2
3. Structural and dynamical characteristics of the interaction
(o, €,... dN/dn,...)

We search for a universal function (z)~Ed*c/dp? which reflects
the self-similarity, locality, and fractality of hadron interactions
as revealed by data on inclusive distributions at high energies.
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Locality of hadron interactions

Gross features of single particle distributions of the reaction
M,+M,~>m+X

can be expressed in terms of the constituent sub-processes

M) + (x,My)=(m/y,) + (X, M, +x,M,+m,/y,).

M,
X,,X5,¥ Y, are momentum fractions
of the corresponding momenta

m, is introduced for internal conservation laws
(isospin, baryon number, strangeness,...)

m,

We consider the sub-process as subject to 4-momentun conservation law
(x,P+x,P, —ply,)* = My?

Recoil mass: My=x,M,+x,M,+tm,/y,
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Fractality of hadron interactions at small scales

» Fractality at small scales is related to constituent substructure
of the interacting objects (hadrons, nuclei).
» The constituents consist of subtle nets of partons (QCD q, q, and g)
which evolve with increasing resolution.
The resolution is connected with p.
» Fractal properties are revealed by increasing the resolution
with respect to all constituent sub-processes which underlay
the inclusive reactions at high energies.

Hypothesis of fractality at small scales:
Hadron constituent sub-structure does not exhaust
with increasing resolution.
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Scaling variable z as fractal measure
The fractality is reflected in definition of z. ﬂ

z=7,()! . / —

Q=(1-x)* (1-%,)*(Ly, ' (1y,) DR /V X

Q is proportional to relative number of configurations
containing a sub-process with fractions x|, X,, y,, v, *
of the corresponding 4-momenta.

8,,0,, &€ - parameters characterizing structure of
the colliding objects and fragmentation process

Q !characterizes resolution at which a constituent sub-process
can be singled out of the inclusive reaction.

z(Q) > if Q' —>w
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Resolution Q! (X1:X9,Y0oYb)

Principle of minimal resolution :

The fractions x,, X,, y,, ¥, are determined to minimize the
resolution Q! of the fractal measure z=z,Q2! with respect to all
constituent sub-processes in which the inclusive particle with
the momentum p can be created.

This corresponds to maximum of
Q=(1-x)" (1-x)* (I-y,) (1- %, f

with the condition
(x,P+x,P, —ply,)?* = (x;M,;+x,M,+m,/y, )*.
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Decomposition of x, and x,

Principle of minimal resolution
U
X; =N +X; M

m

~L ®p E-p, , 1 ®p E+p,
~ ~ L~ ~
l Yo (P P,) ya\/g Y. (P/Py) ya\/g

=+l —w X = il W,

azz

e e

u; and & are simple analytic functions of A, A, and y,

w=pU U=

(xM)) + (x,M,) = mly, +(xM+x,M,+m,/y, )
AFXD)+ A+ X) > A+A)+ (X+X)
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Scaling variable z

12
z=7,Q)! Zg=— L M
0 " (dN,,/dn|,) my ‘

M,

Sz2 =T +T, - transverse kinetic energy of the sub-process

consumed on production of m & m,

T, :yZ\(\/g_Ml)\l -M,A)-m T ZYb(\/g_MD(l -
SA=(A1P1+A2P2)2

ms X, =N +X;

MyXo) =My pr/y, =P/
S><:(X|PI+X2P2)2 0<z<w
dN_,/dn|, - multiplicity density of the charged particles at n=0

¢ - parameter interpreted as a “specific heat” of created medium

my - arbitrary constant (fixed at the value of nucleon mass)

In the central region: T = JpT +m’ -m T =) -m,
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Properties of the scaling function ()
in pp/pp collisions

» Energy independence (s'?> 20 GeV)

- Angular independence (0,,,.=3%90°)

= Multiplicity independence (dN_,/dn=1.5-26)

- Power law,  (z) ~z P, at high z (z>4)

« Flavor independence (n,K,0,A,..,D,J/y,B,Y,...)
Saturation at low z (z<0.1)

NB: Different shapes of y(z) for pp & pp at large z
for h*, n0, direct y, and jets.
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Scaling function y(z)

1 do i L. d’o

v =—22 5 _
)= No, & V@) = aNane. ) Cap?

o, - inelastic cross section

* N — averaged multiplicity of the corresponding hadron species
* dN/dn - pseudorapidity multiplicity density at angle 0 (1)

* J(z,;p2y) — Jacobian

* Ed3c/dp? - inclusive cross section

Normalization of y(z): Scale transformation of z

® -1
j‘l’(z)dz _1 z—>arz Yoo ¥
0

preserves the normalization condition.
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Energy & angular independence of y(z)

Charged hadrons in pp collisions

FNAL: PRD 19 (1979) 764 STAR: PRL 91 (2003) 172302
ISR: NPB100 (1975) 237; NPB 208 (1982) 1 BRAHMS: PRL 93 (2004) 242303
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Energy independence of y(z)

‘ 7, K, p in pp collisions ‘

FNAL: PRD 19 (1979) 764 ; PRD 40 (1989) 2777 STAR: PLB 637 (2006) 161; PLB 616 (2005) 8.
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* The shape of y(z) is the same for different hadrons
* The power law, y(z)~z B at large z
* y(z) is sensitive to 8 and ¢ at large z
* ¢ increases with the particle mass
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Angular independence of y(z)

‘ n ,K, p in pp collisions ‘

ISR: NPB 56 (1973) 333; NPB 100 (1975) 237
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* Sensitivity of y(z) to m, in the fragmentation region (6,,,,=3°)

* ¢ increases with the particle mass

cms

(x,P,+x,P, —ply,)? = (x;M,+x,M,+m,/y, )
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Multiplicity independence of y(z)
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* Multiplicity independence of y(z) over a wide rage of dN,/dn.
» The multiplicity selection criteria give strong restriction on the parameter c.
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‘ Variable z & Entropy

172
— -1 - S (1 V¥ (1=x ¥ (1—v (v )E
2 |2 e QR0 () (=g (1)

1/2
i

7= W =(dN,,/dn|,)° -Q - relative number of such constituent configurations

which contain the configuration {x,, X,, y,, ¥,}

Statistical entropy: =~ Thermodynamical entropy for ideal gas :
S=InW S=cyInT + RInV +8§,

— //\

S =c-In(dN,,/dn|, )+ In[(x,)* (1x,)™ (I-y,)° (l—yb) ] + InW,

dN,,/dn|, characterizes “temperature” of the colliding system.

Provided local equilibrium, dN;/dn|,~T? for high temperatures and small p.

¢ has meaning of a “specific heat” of the produced medium.

Fractional exponents 0,,0,, € are fractal dimensions in the space of {x,,X,,y,,y,}
Entropy increases with dN;/dn|, and decreases with increasing resolution Q *

Maximal entropy S < minimal resolution Q 'of the fractal measure z ‘
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1/2

Scale transformation of z ,

4

Z2=2/W, W(z)=Wy(z)

The scale transformation of the variable z
is connected with arbitrariness S=InW+InW
in the choice of the absolute values of entropy. 0

W, is connected with absolute number of the constituent configurations
which can be realized in a specific inclusive reaction.

W, is very large (infinite) and drops out of the z-scaling
by a renormalization of z (dimensional normalization with my)

W, depends on type of the inclusive particle.

Scaling functions for different hadrons are reduced
to a single curve by the transformation

zoarz VYooV

o =W (F)/W(m) for the corresponding hadron (F)
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F-independence of y(z) & saturation at low z

FNAL:
PRD 75 (1979) 764

ISR:
NPB 100 (1975) 237
PLB 64 (1976) 111
NPB 116 (1976) 77
(low py)
NPB 56 (1973) 333
(small angles)

STAR:

PLB 616 (2005) 8
PLB 637 (2006) 161
PRC 75 (2007) 064901
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‘ 7 ,K, p, A in pp collisions ‘
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* Energy & angular independence
* Flavor independence (x, K, p, A)
* Saturation for z<0.1
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‘ F-independence of y(z) and saturation at low z

‘ T ,p, ®, ¢, K* E Jhy,D,B, Y in pp/pﬁ collisions ‘
STAR:

PRL 92 (2004) 092301

PLB 612 (2005) 181

PRC 71 (2005) 064902 PHENIX:

PRC 75 (2007) 064901 PRC 75 (2007) 051902

CDF:

PRL 88 (2002) 161802
PRL 91 (2003) 241804
PRD 71 (2005) 032001
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* Energy independence
* Flavor independence (p, ®, ¢, E, J/y, D, B, Y) ° Power. law y(z)~z= Pat large z
« Saturation for z = 0.001-0.1 * &, o independent of py, s
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F-independence of y(z) and saturation at low z

CDF:
PRD 71 (2005) 032001

PHENIX:
PRL 98 (2007) 232002

STAR:
QM2008,Jaipur,India
arXiv:0804.4846
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‘ Iy in pp/pp collisions ‘
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* Energy & angular independence
* Saturation for z=0.001-0.1

* Extra large e=1

e y(z)~z Patlarge z
* &, o independent
of pr, 812, 0,
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‘ Kinematics of constituent sub-process in pp

z=2,()"! . Q=(1-%)"(1-x,)*(1-y,)" (I-y,)’
(%P1 tx,P, ply,)* = My?
My=x,M,+x,M,+m,/y,
RS AL —

Principle of minimal resolution Q !
of the fractal measure z gives:

* X,,X, — energy of the sub-process

*y, — energy losses (dissipation) by the production
of the inclusive particle

* M= x,M+x,M,+m,/y, — recoil mass

* y, — multiplicity of the recoil system

Larger ¢ = smaller y = larger energy losses in the final state & larger recoil mass

XIX ISHEPP
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Momentum fractions x,; & x, IFNALL, ISR, RAIG
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" Xy, X, increase with py and decrease with s
" X,, X, increase slightly with the particle mass
" X,=X, at 0, =900; x,>>x, at 6 =2.86°

= Considerable increase of the small fraction x,

with the particle mass at 6, =2.86°

(x,P,+%,P, —p/y,)? = (XM +x,M,+m,/y, }* XIX ISHEPP
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Momentum fractions y, & y, IFNALL ISIR, [RlC
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= y, increases with p; = energy losses decrease with py.

= y, decreases with s!’> = energy losses increase with s!/?

= y, slightly decreases with m = energy losses increase with particle mass

=y, is flat with p; = week dependence of My on p

" y,<<y, for p;>1 GeV/c = production of (m) is balanced by soft (high multiplicity) recoil My
=y, slightly increases with m = heavier particles are balanced by harder recoil My

(X, P #x,P, —p/y, ) = (X, M +x,M,+m,/y, )? XIX ISHEPP
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Momentum fractions y, & y,
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= y, increases with p; = energy losses decrease with p; for various flavors

= y, is flat with p; = weak dependence of My on p; for various flavors
" y,=y, at low pr = My=m/y, (for heavy particles)
= Anomaly small y, for J/iy = extra large energy losses for J/y production
= Anomaly small y, for J/\y = extra soft (high multiplicity) recoil My for J/y production

Uk

(x,P+x,P, —ply,)? = (x, M, +x,M,+m,/y, )?
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Momentum fractions y, & y, A R, Veven
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= y, significantly decreases with s'2 = energy losses considerably increase with s’

= y, significantly decreases with s'”2 = large increase of the recoil multiplicity with s'2
=y, is larger for small O, = smaller energy losses in the fragmentation than in the central region
= dependence of y,, y, on the respective Y state vanish at higher energy

= y,2y, at small p; = My=m/y, is independent on s'? for heavy quarkonia

(x,P,+%,P, —p/y,)? = (XM +x,M,+m,/y, }* XIX ISHEPP
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Recoil mass My, AL S Ry Teveton

My=x; M, +x,My+m/y,,
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= My slightly increases with py
= My increases with s!/? for all particle species
= M, increases with the particle mass
= Extra large My for J/y
(X, P #x,P, —p/y, ) = (X, M +x,M,+m,/y, )? XIX ISHEPP
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Summary of z-scaling in pp/pp collisions

® The energy, angular, and multiplicity independence of ‘¥'(z)
for h*, n~, K-, p .K§, A

= Consistence of z-scaling with p, o, &, B, D, J/y, and Y production

= The flavor independence over large region of z

= The saturation at low z

= The power law at high z

= “Specific heat” for the pp/pp system: c=0.25

= Proton fractal dimension: 6=0.5

= Fragmentation dimension € increases with the particle mass:

g(m)=0.2, e(K)=0.3, &(p)=0.35, €(A)=0.4
® ¢, 8, ¢ are independent of py, s'2, 6, and multiplicity.

XIX ISHEPP
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Scaling features in AA collisions

Additivity of fractal dimensions in pA collisions: 5,~A&

The property is connected with factorization of the resolution Q!
of the fractal measure z=z,Q2"! for small values of x,=x,.

X2 = AX , -momentum fraction of the interacting nucleus
expressed in units of the nucleon mass

Q=(1- Xl)é( 1-X,/ A)A5 is relative number of initial configurations
~(1-x )5 ( X )5 in a single nucleon interaction regime (x,<A ).
= -X -X2

8,=Ad | is consistent with z-scaling in pD, pBe, pTi, pW collisions PRC 59 (1999) 2227

| 5=A,5 & 5,-A,5 in AA collisions
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Charged hadrons in peripheral AuAu collisions
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ISR:  NPB 208 (1982)1

STAR: PRL 89 (2002) 202301;
PRL 91 (2003) 172302

PHOBOS: PRL 94 (2005) 082304

pp collisions:

dN_/dn], for non-single-diffractive events
AA collisions:

dN_,/dn|, for corresponding AA centrality

® The energy independence of W(z) in peripheral AuAu
= The same shape of ¥(z) for pp & peripheral AuAu

= “Specific heat” c,5,=0.11 < ¢, =0.25

= The same ¢ in pp & peripheral AuAu

Q=(1-x)"(1-x)*(1-y,)"(1-y,

12
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Charged hadrons in 200 GeV AuAu collisions

different centralities

STAR: PRL 91 (2003) 172302
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® Suppression of ¥(z)
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= “Specific heat” ¢, ,,=0.11 for all centralities

Q=(1-x)"(1-x)*(1-y,)"(1-y,

XIX ISHEPP

Sept. 29-Oct.4, Dubna 2008

112
S -1

z=———=—— Q)
(dN,,/dn ) my 3



Charged hadrons in 62 & 130 GeV AuAu collisions

different centralities
PHOBOS: PRL 94 (2005) 082304
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® The same ¥(z) in AuAu & pp for €,,,, dependent on AuAu multiplicity
= “Specific heat” ¢, ,,=0.11 (constant with s!"?)

= g,increases with s12:  £,(62GeV)=0.0018 < g,(130GeV)=0.0022< £,(200GeV)=0.0028 (AuAu)
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Charged hadrons in 62 & 200 GeV CuCu collisions

ISR: Z.Phys.C69 (1995) 55; NPB 208 (1982) 1
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® The same ¥(z) in CuCu & pp for g¢,¢, dependent on CuCu multiplicity

= “Specific heat” ¢, ,=0.14 is constant with s'/?

= g increases with s'2: g (62GeV) =0.005< £,(200GeV) =0.008 (CuCu)

Q=(1-x)"(1-x)*(1-y,)"(1-y,
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Charged hadrons in 200 GeV dAu & AuAu collisions

different centralities

STAR: PRC 70 (2004) 064907; PRL 91 (2003) 172302
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® The same shape of ¥(z) in dAu, AuAu, and pp for &, , dependent on AA multiplicity
= “Specific heat” ¢ decreases with the system size:
cpp=0.25> Cian=0.23 > €y, =0.14> ¢ 14, =0.11
= g,decreases with the system size:
go(dAu) =0.04> g,(CuCu) =0.008> g,(AuAu) =0.0028  (s'>=200GeV)

Q=(1-x)"(1-x)*(1-y,)"(1-y,
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Negative hadrons in 200 GeV AuAu collisions

different angles and centralities
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® The multiplicity independence of ¥(z) in the central and fragmentation region
= The same dependence of ¢ on (dN,,,/dn) in the central and fragmentation region
® The sensitivity of ¥(z) to m, in the fragmentation region

Q=(1-x)*(1-x)*(1-y,)"(1-y,
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Negative pions in 62 & 200 GeV AuAu collisions
different centralities

ISR: NPB 100 (1975) 237; NPB 208 (1982) 1
STAR: PLB 637 (2006) 161; PRL 97 (2006) 152301; PLB 655 (2007) 104
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® The same ¥(z) in AuAu & pp for &,,,, dependent on AuAu multiplicity
= “Specific heat” ¢, ,,=0.11 is the same as for negative hadrons
= g, is the same as for negative hadrons
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Negative pions in 200 GeV AuAu collisions

different rapidities in central collisions

BRAHMS: PRL 94 (2005) 162301
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® The same W(z) for g,,,, dependent on AuAu multiplicity at different rapidities
= “Specific heat” c,,4,=0.11 does not depend on rapidity
= g, does not depend on rapidity
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Saturation of y(z) at low z in AuAu collisions

¥
PHOBOS:

PRC 75 (2007) 024910
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* The saturation of y(z) in AuAu for z<0.1
* The saturation in AuAu extrapolates the saturation in pp up to z=0.004
* The centrality (multiplicity) independence of y(z) in AuAu
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Negative kaons in 130 & 200 GeV AuAu collisions
different centralities

PHENIX: PRC 69 (2004) 034909; PRC 74 (2006) 024904
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® The same ¥(z) in AuAu & pp for €4, dependent on AuAu multiplicity
= “Specific heat” ¢, ,,=0.11 is the same as for negative hadrons
= g,is the same as for negative hadrons
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‘ K% & ¢ mesons in 130 & 200 GeV AuAu collisions

different centralities
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® The same ¥(z) in AuAu & pp for &, dependent on AuAu multiplicity
= “Specific heat” c,,,,=0.11 is the same as for negative hadrons
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Direct photons in AuAu collisions
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® Data prefer e~0 (y=1) - direct production of y in the sub-process
with no (or small) energy losses.
= But error bars are too large to make strong conclusion on ¢
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‘ Kinematics of constituent sub-process in AA

z=7,(Y! y Q=(1-x)"(1-x)*(1-y, ) (1-y,)°
(X, P +x,P, —ply,)? = My?
/ My=x,M;+x,M,+tmy/y;
M, TS X2 \m‘ M;

Principle of minimal resolution QO !
of the fractal measure z gives:

* X,;,X, —energy of the sub-process

* y, — energy losses (dissipation) by production of
the inclusive particle

* M= x,M+x,M,+m,/y, — recoil mass

* y, — multiplicity of the recoil system

Larger ¢ = smaller y = larger energy losses in the final state & larger recoil mass

XIX ISHEPP
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Momentum fractions y,, y, in pp & AuAu
PHOROS  charged hadrons STAR
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=y, decreases with centrality = energy losses increase with centrality

= The decrease of y, in AuAu relative to pp is larger at higher pp =
relative energy losses AuAu/pp increase with py.

= The decrease of'y, in AuAu relative to pp (at same py) is larger at higher s'2 =
relative energy losses AuAu/pp increase with s!/2

(x,P,+x,P, —p/y,)? = (x,M,+x,M,+m,/y, XIX ISHEPP
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Momentum fractions y,, y, in dAu, CuCu, AuAu
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= y, decreases with centrality in all AA = energy losses increase with centrality for all AA systems

= The decrease of y, in AA relative to pp is larger for heavier AA systems =
relative energy losses AA/pp increase with the system size

= The relative energy losses dAu/pp are considerably small.

(x,P,+x,P,—ply,)* =

(x;M+x,M,+m,/y,)?
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Y., ¥y 10 the central and fragmentation regions
eyam charged/negative hadrons gmapiiis
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® Considerable decrease of y, in AuAu relative to pp at 6,
relative to pp in the fragmentation region

= y, is larger at 0, =5° than for 0,,,,=90° = smaller energy losses in the fragmentation region
than in the central interaction region

= The decrease of y, in AuAu relative to pp (at same py) is larger at 6, =5° than for 6, =90° =
relative energy losses AuAu/pp are larger in the fragmentation than in the central region (at same py).

=50 = considerable energy losses in AuAu

cms

(x,P,+x,P, —p/y,)? = (x,M,+x,M,+m,/y, XIX ISHEPP
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Summary of scaling features in AA collisions

< Assuming multiplicity dependence of the fragmentation dimension
€an = & (2dN, Jdn)te

an approximate energy, angular, and centrality independence

of y(z) in AA collisions for h*, -, K-, K%, ¢ can be obtained.
* g, depends on s!2 and system size
* g, is independent of the particle type, angle, and centrality
« “Specific heat” ¢ is independent of s'’2, particle type, angle, and centrality.
* “Specific heat” ¢ decreases with the system size:

Cpp=0.25 > €44, =0.23 > €(,,,=0.14 > ¢, 4,=0.11.

XIX ISHEPP
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Internal symmetry of hadron production at small scales

(space-time structural relativity at high p;)

The symmetry connects Self-similarity, Locality, and Fractality.

It is the symmetry with respect to structural degrees of freedom.

The structural relativity is realized by structural transformations.

The transformations connect kinematical variables expressed relative

to different fractal structures A and B.

The fractal structures are characterized by different fractal dimensions 8, and 9,.

The structural relativity is a symmetry of hardon production at small scales expressed
by special Lorenz-like transformations at constant spatial resolution &:

y() =(1-u®)"" s the structural velocity

A B B
=YW(E" —up, ) § 6 = 1,/1, is ratio of the fractal dimensions

P} = vW(p? ~uE”) v 2l

A B
Pr =Pr e Y . ‘ _
TVA-A)(I-A) & is the spatial resolution
)‘1,2 = (Pz,lp)/ (P,Py)

XIX ISHEPP
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Structural relativity in collisions of structural objects A & B

The requirement of minimum resolution of the fractal measure z gives
specific decomposition of the momentum fractions:

X, = )\1 +X A= (Pjp)/(PAPB)
2 2 u a-1
X2=)\2+X2 X,=m¢wi wi=|JiU U= . 2:mg
—u

XXz = YO[(,—1, ) u(p,+9,)]
Xt = Y[+, ) - u(p, -1, )]

The fractions y;, |; are expressed via momenta of the colliding and produced particles:

YW = (1-u?) "

—B _ _ 1 —A
®p ) e g =7(p +m?
= — Xl_Xz =—7=Pp, X1+X2 =—E X1X2 T 2
@) Vs Vs 6
—A 2 —B 2 =B 1 (BB)Z 2
_®p) Ul—Hz=sz= U1+Hz=fE HIHZZfV r) +m;
" (PP) _ N .
Structural transformations: Invariant: XiXo =HiHy is o independent function of &
—A W) B uEB —A —p  The structural transformations connect (E,p)
EZA =V AN P, =P, expressed relative to different structures A and B
E =Yy@WI|E -up, at the same scale &
XIX ISHEPP
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‘ Structural velocity transformations

Lorenz-like transformations:  Velocity transformations:

E* =V(u)gEB—upf) 0 u, +u, u_ G—lg
p? = y@)(p? —uE") 1+u,u, 1-u’ 2+a
A _ B
Pr =Pr
a=20,/8,

Kinematical limit < fractal limit:

a-1
E=loz=m0 u=——o < a=0aa,
a+1

Space-time structural relativity preserves motion relativity
at any spatial resolution &.
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Conclusions

a The main features of z-presentation of inclusive spectra at high energies
were summarized.

a New properties of the z-scaling in pp/pp collisions — flavor independence and
saturation at low z, were established.

a z-Scaling reflects the self-similarity, locality, and fractality of hadron interactions
at constituent level.

a The scaling features of charged hadron, negative pion and kaon production
in AA collisions were demonstrated.

a Kinematic properties of the constituent sub-processes were discussed.

] Estimates of the energy losses in pp &AA collisions in terms
of the momentum fractions were obtained.

a Structural relativity connected with the self-similarity, locality, and fractality
of hadron production at high p; was discussed.

a The results may be of interest in searching for new physics in soft and hard p;

region of particle production at RHIC, Tevatron, and LHC.
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Thank You for Attention
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