ISOTOPE PRODUCTION RATES IN THE LEAD TARGET OF THE "ENERGY PLUS TRANSMUTATION"-SETUP IN THE REACTION D+Pb AT 2,52 GEV

<u>O. Yordanov</u>, J. Adam, S. Batzev, K. Katovsky, L. Kostov, V. D. Kovalenko, M. I. Krivopustov, M. Majerle, A. A. Solnyshkin, Ch. Stoyanov, V. M. Tsoupko-Sitnikov, P. Zhivkov

Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria Joint Institute for Nuclear Research, Dubna, Russia Czech Technical University, Prague, Czech Republic Nuclear Physics Institute, Rez, Czech Republic

The need of studies for future options of Nuclear power

<u>Contemporary Nuclear Power</u>
Favorable price of the produced energy
<u>clean</u> - limited emission of CO2 compared to the amount of produced power
<u>dependable</u>- one of high-tech branches of world's economy
Environmentaly friendy?: depends on the existence of long-term storage capabilities

Expanding Nuclear Power Production?

Fast rising energy demands of growing economies
Economic growth + reduction of greenhouse gas emissions
Avoiding of storage needs for large quantities of radioactive wastes
Need for new approaches for future energy production

A possible approach: Accellerator Driven Systems (ADS)-

<u>The "Energy plus Transmutation" experiment, JINR Dubna:</u> <u>A sub-critical assembly for transmutation studies following the ADS concept</u>

Studies of (n,γ) , (n,f), (n,xn) reactions in the neutron field generated in the irradiation of the U/Pb-target-blanket-assembly with relativistic proton/deuteron beams Samples: Pu238,239, Np237, I129, I127, Bi, Al, Fe, Dy, La, In, Pb, Au

Drawing by M. I. Krivopustov and T. Tumendelger, JINR Dubna

Target-Blanket System "Energy & Transmutation", Experiments' hall of the Nuclotron facility

Experimental studies on nuclide production in the Pb-target

Six Pb-samples
Experimental data for the nuclide production in the Pb-target
Comparison of the experimental data with calculations

•Production of β + radioactive nuclides

•Identification of the produced nuclides by precision gammaspectroscopy of the samples using HPGe detectors

•Assignment of the observed gamma-transitions to the corresponding decaying nuclides

•"Off-line" gamma-spectroscopy e.g. after the end of the irradiation

•The determination of the isotope production rates is based on the measurement of the absolute intensity of the assigned gamma-transitions

							121					126	
				118	83	203	204	205	206	207	208	209	Bi
82	197	198	199	200	201	202m	203	204	205	206	207	208	Pb
81	196	197	198	199	200	201	202	203	204	205	206	207	ΤI
80	195	196	197	198	199	200	201	202	203	204	205	206	Hg
	79	195	196	197	198	199	200	201	202	203	204	205	Au

The production rate of an isotope (A,Z) is defined as:

 $R_{A,Z} = \frac{N_{A,Z}}{Y_{total}.N_{nat.Pb}}$ [number of prod. nuclei/incoming deuteron/target atom]

Analysis of the isotopes of Bi and Pb: 1-step decay

Analysis of isotopes of TI: 2 feeding and two decay channels

$$D_{2}(t_{1},t_{2}) = \frac{\lambda_{2}.N_{1}^{0}}{\lambda_{2}-\lambda_{1}} \cdot \left[\exp(-\lambda_{1}.t_{1}) - \exp(-\lambda_{1}.t_{2})\right] + \left(N_{2}^{0} - \frac{\lambda_{1}.N_{1}^{0}}{\lambda_{2}-\lambda_{1}}\right) \cdot \left[\exp(-\lambda_{2}.t_{1}) - \exp(-\lambda_{2}.t_{2})\right]$$

•Nuclei of Pb and TI are produced by each spill of the accelerator, the produced amounts are proportional to the R-factors and the number of D-nuclei.

• The number of D-nuclei in each spill are known

•The production rate of the nuclide R(A,TI) can be calculated if R(A,Pb) is known and a sum over all spills is taken.

204Bi, 984.02 keV

Lit.: T1/2=11.22 (10) h

204Bi, 899.15 keV

206Bi, 803.10 keV

Lit.: T1/2=6,243 (3) d

206Bi, 343.51 keV

Results

Production rates of Bi-isotopes

Production rates of TI-isotopes

Production rates of Pb-isotopes

Isotope production rates for the reaction D+Pb @ 2,52 GeV

Calculations: MCNPX, TALYS

•Goal: Calculation of the isotope production rates R(A,Z)

•MCNPX- provides calculation of the fluxes of neutrons, deuterons and protons at the location points of samples

•Production cross sections: TALYS: particle energies less than 150 MeV , MCNPX – greater than 150 MeV

•Sum over the partial productions with respect to the isotope composition of nat. Pb: 204Pb,206Pb,207Pb,208Pb

$$R_{Calc} = \sum_{i,A(Pb)} p_{A(Pb)} (\phi_n(E_i) . \sigma_{n,X(A,Z)}^{A(Pb)}(E_i) + \phi_p(E_i) . \sigma_{p,X(A,Z)}^{A(Pb)}(E_i) + \phi_d(E_i) . \sigma_{d,X(A,Z)}^{A(Pb)}(E_i)) 0,001.1e^{-24}$$

 $\phi_n(E_i), \phi_p(E_i), \phi_d(E_i)$: [particles/cm²/incoming deuteron].

 $\sigma_{n,X(A,Z)}^{A(Pb)}(E_i), \sigma_{p,X(A,Z)}^{A(Pb)}, (E_i), \sigma_{d,X(A,Z)}^{A(Pb)}(E_i)$: production cross sections [mbarn]

<u>Comparison between calculated and measured isotope production rates:</u> <u>Pb isotopes</u>

<u>Comparison between calculated and measured isotope production rates:</u> <u>TI isotopes</u>

Comparison between calculated and measured isotope production rates: Bi isotopes

Outlook

•Using Pb-samples placed at different positions along the Pb-target the production rates of isotopes of Bi, Pb and TI have been measured.

•The results are consistent and show a maximum of the isotope production in the middle part of the target.

•No short-living isotopes with T1/2 below 3h have been observed.

•No significant amount of decays of isotopes with Z<80 have been observed.

•The best agreement between measured and calculated isotope production rates was observed for Pb-isotopes.

•Except the 0th target, all deviations between calculated and measured production rates do not exceed 1 order of magnitude.

Next experiments

•The use of purified samples of 100%-208Pb is preferred.

•The gamma-spectroscopy measurements of the samples has to start as soon as possible after the end of the irradiation in order to observe short-living isotopes produced in reactions with the most energetic particles.

• Collecting of isotope production rates at different beam energies.

Thanks to all friends and colleagues from:

Cross-section Pb(p,pxn)

