XIX International Baldin Seminar on High Energy Physics Problems
Relativistic Nuclear Physics and Quantum Chromodynamics
September-October, 2008

Yu.A.Troyan*, A.V.Beljaev, A.Yu.Troyan, E.B.Plekhanov, A.P.Jerusalimov, S.G.Arakelian
*E-mail: atroyan@jinr.ru

The Search and Study of Low-Mass Scalar σ_{0}-meson

$$
\begin{aligned}
& \text { in the reaction } \mathrm{np} \rightarrow \mathrm{np} \pi^{+} \pi^{-} \\
& \text {at the Impulse of Neutron Beam } P_{n}=5.20 \mathrm{GeV} / \mathrm{c}
\end{aligned}
$$

The investigation has been performed at the Veksler and Baldin Laboratory of High Energies, JINR.

Introduction

This work continues a series of our works, devoted to the study of low-mass ($\mathrm{M}<1.2 \mathrm{GeV} / \mathrm{c}^{2}$) resonances in the $\pi^{+} \pi^{-}$- system.

Their existence can clarify the properties of low-lying scalar mesons (the so-called σ_{0} - mesons),
whose investigation is important both
for the mechanism of realization of chiral symmetry
for corresponding Lagrangians and
for an adequate description of an attractive part
of the nucleon-nucleon interaction potential.
It was noted by dr. Pennington that light scalar mesons constitute Higgs sector
of strong interactions
that ensures finite masses of all kinds of light hadrons
(with simultaneous disappearance of pi - meson mass)
To clarify these fundamental conceptions, it needs thorough studying of properties of σ_{0}-mesons and also investigation of their structure.

There are hundreds of works devoted to these problems, and we have no possibility to quote all of them. We send a reader to the review in PDG.
However this review of some theoretical works concerns the quark-gluon picture of the scalar mesons structure.
There σ_{0}-mesons are considered
as a construction of 2 or 4 quarks, as glueballs,
as constracted of quarks into diquarks etc.

However there are some other conceptions of this problem.
Among them are
-the predictions of series and properties of resonances from the point of view
of multi-dimensional space (Archipov),
-the predictions of series of resonances,
obtained from formulas of quasi-classic quantization (Gareev),
-the predictions of resonance series
based on the McGregor model (Palazzi),
-the search for properties of instant vacuum (Kochelev).

> Such a large number of theoretical conceptions
> tell that the understanding of properties and structure of σ_{0}-mesons does not yet exist.

It may be explained first with the absence of experimental data in the region of masses less than $1 \mathrm{GeV} / \mathrm{c}^{\mathbf{2}}$.

The problem became more actual due to:
statistically abundant data obtained at the HADES spectrometer; investigations of mixed phase planned in the LHE JINR [LHE];
some similar experiments planned in other accelerators in the world.
The low-mass σ_{0}-mesons can become a powerful tool to study of new state of matter. Predictions about varying of the σ_{0}-meson properties in intermediate conditions are obtained in some papers (Volkov).

Reaction $n p \rightarrow n p \pi^{+} \pi^{-}$
The study was carried out using the data obtained in an exposure of 1-m HBC of LHE (JINR)
to a quasimonochromatic neutron beam with $\Delta P_{n} / P_{n} \approx \mathbf{2 . 5 \%}, \Delta \Omega_{n} \approx 10^{-7}$ sterad.
due to the acceleration of deuterons by synchrophasotron of LHE
The accuracy of the momenta of secondary charged particles
from the reaction $n p \rightarrow n p \pi^{+} \pi^{-}$are:
$\Delta P / P \approx 2 \%$ for protons and $\Delta P / P \approx 3 \%$ for π^{+}and π^{-}.
The angular accuracy was $\leq 0.5^{\circ}$.
The channels of the reactions were separated by the standard χ^{2}-method
taking into account the corresponding coupling equations.
There is only one coupling equation for the parameters of the reaction $n p \rightarrow n p \pi^{+} \pi^{-}$(energy conservation law) and the experimental χ^{2}-distribution must be the same as the theoretical χ^{2}-distribution with one degree of freedom.
$\mathrm{np} \rightarrow \mathrm{np} \pi^{+} \pi^{-} \quad \mathrm{P}_{\mathrm{n}}=\mathbf{5 . 2 0} \mathrm{GeV} / \mathrm{c}$

The experimental (histogram) and the theoretical (curve) χ^{2}-distributions for the reaction $n p \rightarrow n p \pi^{+} \pi^{-}$.

One can see a good agreement between them up to $\chi^{2}=1.5$ and some difference for $\chi^{2}>1.5$.
As a result, 25650 events
were selected under the 4π geometry

> an admixture of other reactions practically is absent

The missing mass distribution for the events of $\chi^{\mathbf{2}} \leq 1.5$.
The distribution has the maximum at the value equal to the neutron mass with accuracy of $0.1 \mathrm{MeV} / \mathrm{c}^{2}$,
the width at the half-height $20 \mathrm{MeV} / \mathrm{c}^{2}$
and is symmetric about the neutron mass.
For more purity of data a small number of events with the missing masses out of green range were excluded.

Earlier, we have already studied the reaction $n p \rightarrow n p \pi^{+} \boldsymbol{\pi}^{-}$,
and OPE-exchange with a dominated exchange of the charged π-meson has been shown to be the main mechanism of this reaction. It leads to a plentiful production (up to $\mathbf{7 0 \%}$ of the total reaction cross section) of Δ^{++}and Δ^{-}-resonances in the lower and upper vertices of the corresponding diagrams.

The OPE - exchange calculated by means of One Pion Reggezied Exchange model. OPER model contains the processes of N^{*} and Δ^{*}-resonances production and elastic $\pi \pi \rightarrow \pi \pi$ scattering.
In addition to the description of the reaction $n p \rightarrow n p \pi^{+} \pi^{-}$, the processes of the diffraction production of $\mathrm{N}_{1440}^{*}, \mathrm{~N}_{1520}^{*}$ and N_{1680}^{*}-resonances are used.

This OPE mechanism gives the main part into the events with neutron flying into the forward hemisphere.

The effective mass distribution of $\pi^{+} \pi^{-}$-combinations for the events with $\cos \Theta_{n}^{*}>0$.
There are no such effects on this distribution.

Red line - the superposition of Legendre polynomials up to $\boldsymbol{9}^{\text {th }}$ power.
Described this experimental distribution with $\overline{\chi^{2}}=1.02 \pm 0.15$ and $\sqrt{D}=1.51 \pm 0.11$
Blue line - the curve calculated by means of OPER model
Describes this experimental distribution with $\overline{\chi^{2}}=1,07 \pm 0,15$ and $\sqrt{D}=1,60 \pm 0,11$.

Therefore, it seems reasonable to study the resonances in the $\pi^{+} \pi^{-}$-system of the reaction $n p \rightarrow n p \pi^{+} \pi^{-}$selecting the events on condition that $\cos \Theta_{\mathrm{p}}^{*}>0$.
The total contribution of the Δ^{++}and Δ^{-}-resonances is not more than 17% for these events, and the background from resonance decays decreases greatly.

Green line - the superposition of Legendre polynomials background and 9 resonance curves taken in the Breit-Wigner form.
The experimental values of the resonance masses (obtained by fitting procedure) are shown by arrows.

BACKGROUNDS:

Red line - up to $9^{\text {th }}$ power Legendre polynomials

Described the background with
$\frac{\chi^{2}}{}=0.97 \pm 0.24 \quad$ and $\quad \sqrt{D}=1,36 \pm 0,17$
The contribution of the background to this distribution is $\mathbf{8 9 \%}$.

Normalized to $\mathbf{1 0 0 \%}$ of events in the plot (with resonance regions included) with $\overline{\chi^{2}}=1.26 \pm 0.15$ and $\sqrt{D}=1.59 \pm 0.11$
(Confidence Level 9\%).
Blue line - calculated by means of OPER model

Described the background with $\overline{\chi^{2}}=0,95 \pm 0,24$ and $\sqrt{D}=1,45 \pm 0,17$.

Normalized to $\mathbf{1 0 0 \%}$ of events in the plot (with resonance regions included) with $\overline{\chi^{2}}=1,24 \pm 0,15$ and $\sqrt{D}=1,87 \pm 0,11$.
(Confidence Level 11%).

The mass distributions is approximated by an incoherent sum of the background curve taken in the form of a superposition of Legendre polynomials and by resonance curves taken in the Breight-Wigner form.

The requirements to the polynomial background curve are the following:
$>$ the errors of the coefficients must be not more than 50% for each term of the polynomial;
> the polynomial must describe the experimental distribution after "deletion" of resonance regions with $\overline{\chi^{2}} \approx 1.0$ and $\sqrt{D} \approx 1.41$ (the parameters of χ^{2}-distribution with 1 degree of freedom).

The results of approximation - Table 1

$\begin{gathered} \mathbf{M}_{\mathrm{Reses}} \pm \Delta \mathbf{M}_{\mathrm{Rece}}, \\ \mathrm{MeV} / \mathbf{c}^{2} \end{gathered}$	$\begin{aligned} & \Gamma_{\text {Res }} \pm \Delta \Gamma_{\text {Rese }} \\ & \mathbf{M e V / c}{ }^{2} \end{aligned}$	S.D.	$\sigma_{\mu b}$
350 ± 3	11 ± 8	3.5	12 ± 6
408 ± 3	11 ± 8	3.5	12 ± 6
489 ± 3	20 ± 10	4.0	20 ± 8
579 ± 5	17 ± 14	3.8	18 ± 8
676 ± 7	11 ± 14	3.0	11 ± 6
762 ± 11	53 ± 33	6.1	26 ± 8
878 ± 7	30 ± 14	3.6	11 ± 5
1036 ± 13	61 ± 30	5.1	15 ± 5
1170 ± 11	65 ± 33	5.8	11 ± 4

The first column contains the experimental values of the resonance masses and their errors.
The second column contains the experimental values of the total width of the resonances.
The third column contains the statistical significances of the resonances, determined by formula: S.D. $=N_{\text {Res. }} / \sqrt{N_{\text {back. }}}$.

The fourth column contains the resonance cross-sections.
For the cross sections errors, we have taken into account the cross section error for the reaction $n p \rightarrow n p \pi^{+} \pi^{-}$at $P_{n}=5.20 \mathrm{GeV} / \mathrm{c}\left(\sigma_{n p \rightarrow n p \pi^{+} \pi^{-}}=(6.22 \pm 0.28) \mathrm{mb}\right)$

The mass resolution function grows with increasing mass as: $\Gamma_{\text {res }}(\mathrm{M})=4.2\left[\left(\mathrm{M}-\sum_{\mathrm{i}=1}^{2} \mathrm{~m}_{\mathrm{i}}\right) / 0.1\right]+2.8$, where: M - the mass of the resonance, m_{i} - the rest mass of the particles composing this resonance, M and m_{i} are in $G e V / c^{2}$; coefficients 4.2 and 2.8 are in $\mathrm{MeV} / \mathrm{c}^{2}$.

The true width of a resonance is obtained by formula: $\Gamma_{\text {Res }}^{\text {true }}=\sqrt{\left(\Gamma_{\text {Res }}^{\text {exp }}\right)^{2}-\left(\Gamma_{\text {res }}\right)^{2}}$.

We have tried to estimate the quantum numbers

for the observed resonances in $\pi^{+} \pi^{-}$-system
The distributions of emission angles

$$
\text { of } \pi^{+} \text {- meson }
$$

in the helicity coordinate system (subtracted background) are described by a sum of even-power Legendre polynomial with maximum power being equal to 2 J , where spin of the resonance $\geq \mathrm{J}$ The most probable spin values

No corresponding signal in the $\pi^{-} \pi^{0}$-system from the reaction $\mathrm{np} \rightarrow \mathrm{pp} \pi^{-} \pi^{0}$
No corresponding signal in the $\pi^{-} \pi^{-}$-system from the reaction $\mathrm{np} \rightarrow \mathrm{pp} \pi^{+} \pi^{-} \pi^{-}$

which also have been studied by us

The isotopic spin values
for these resonances are equal to 0 for these resonances are equal to 0

Taking into account
Generalized Pauli`s principle for 2π-system

peculiarities observed in our experiment
have the quantum numbers

$$
I^{\mathrm{G}}\left(\mathrm{~J}^{\mathrm{PC}}\right)=0^{+}\left(0^{++}\right)
$$

and may be identified as σ_{0}-meson

Intensification of the Effect

To intensify the effect, we have used an additional criterion of events selection namely on the variable

$$
\boldsymbol{X}_{\pi^{+} \pi^{-}}^{*}=\left(\boldsymbol{P}_{\| \pi^{+}}^{*}+\boldsymbol{P}_{\| \pi^{-}}^{*}\right) / \boldsymbol{P}_{\pi}^{*} \max
$$

where: $P_{\| \pi^{+(-)}}^{*}$ - experimental value of the longitudinal component of $\pi^{+}\left(\pi^{-}\right)$in general c.m.s.,
P_{π}^{*} max- maximum possible value of π-meson momentum for given event in general c.m.s.
Since the application of the criterion $\cos \Theta_{\mathrm{p}}^{*}>0$
the main background arises due to OPE diagram where the exchange is π^{0}-meson (1) and due to the process of diffraction production (Pomeron exchange).
The process $\pi^{-} p \rightarrow \pi^{0} n$ (charge exchange process)
plays the basic part in these diagrams.
There are no peculiarities in the cross section of this process except the maximum at $M_{p \pi^{-}}=1236 \mathrm{MeV} / \mathrm{c}^{2}$.

The diagrams of the type (2) become more important.
This diagram was earlier vastly masked by diagrams of the charged meson exchange

π^{+}and π^{-}are equitable in diagrams (2),
therefore it is possible to expect that effect will arise in $\pi^{+} \pi^{-}$- scattering, $\pi^{+} \pi^{-}-$system will be close to symmetric (in $X_{\pi^{+} \pi^{-}}^{*-}$ variable) relative to $X_{\pi^{+} \pi^{-}}^{*} \approx 0$ 。

to intensify the resonance effect at the mass of $489 \mathrm{MeV} / \mathrm{c}^{2}$.

The similar procedure was used for other studied effects.

The resonance (green) and the background (orange) regions of masses

One can see
that the resonance events get to some regions of $X_{\pi^{+} \pi-}^{*}$ with more probability than background one

It is possible to significantly decrease a part of background
to the resonance due to selection of bands

$$
\text { on } X_{\pi^{+} \pi}^{*}
$$

where the probability for resonance events is larger than for the background one.

The strong increase of effect at the mass of $489 \mathrm{MeV} / \mathrm{c}^{2}$. S.D. $=6$.

$X_{\pi^{+} \pi^{-}}^{*}$ distributions

for the resonance (green)
and the background
regions of masses

The total absence of effect at the mass of $489 \mathrm{MeV} / \mathrm{c}^{2}$

The regions of samples on $X_{\pi^{+} \pi^{-}}^{*}$ for various mass regions

> (for the corresponding resonsnces) $$
X_{\pi^{+} \pi^{-}}^{*} \text { Vs } \mathbf{M}_{\pi^{+} \pi^{-}}
$$

Some of the $X_{\pi^{+} \pi^{-}}^{*}$ regions are overlapping for different resonances.
This observation is taken into account at the construction of the background curves for the distributions of the resonance effective masses.

The distributions of $M_{\pi^{+} \pi^{-}}$after useing the criterion $X_{\pi^{+} \pi^{-}}^{*}$
for all our observed resonances.
The background and resonance (Breigt-Wigner) curves are shown.

The use of the $X_{\pi^{+} \pi^{-}}^{*}$ criterion decreases strongly the level of the background for each effect not distorting the resonance characteristics.

	$\mathbf{M}_{\text {Res }}+\Delta \mathbf{M}_{\text {Res }}$ $\mathbf{M e V} / \mathbf{c}^{2}$	$\Gamma_{\Gamma_{\text {Res }}}+\Delta \Gamma_{\text {Res }}$ $\mathbf{M e V} / \mathbf{c}^{2}$	S.D.
1	$\mathbf{3 5 3} \pm \mathbf{6}$	$\mathbf{1 2} \pm \mathbf{8}$	$\mathbf{5 . 5}$
2	$\mathbf{4 0 8} \pm \mathbf{5}$	$\mathbf{1 6} \pm \mathbf{6}$	$\mathbf{5 . 0}$
3	$\mathbf{4 8 9} \pm \mathbf{4}$	$\mathbf{2 8} \pm \mathbf{1 3}$	$\mathbf{6 . 0}$
4	$\mathbf{5 8 5} \pm \mathbf{6}$	$\mathbf{1 9} \pm \mathbf{7}$	$\mathbf{5 . 4}$
5	$\mathbf{6 7 8} \pm \mathbf{3}$	$\mathbf{1 8} \pm \mathbf{9}$	$\mathbf{5 . 5}$
6	$\mathbf{7 6 4} \pm \mathbf{1 8}$	$\mathbf{5 3} \pm \mathbf{1 8}$	$\mathbf{6 . 9}$
7	$\mathbf{8 7 6} \pm \mathbf{4}$	$\mathbf{2 8} \pm \mathbf{1 0}$	$\mathbf{6 . 8}$
8	$\mathbf{1 0 3 6} \pm \mathbf{1 0}$	$\mathbf{6 0} \pm \mathbf{1 6}$	$\mathbf{6 . 4}$
9	$\mathbf{1 1 6 8} \pm \mathbf{1 1}$	$\mathbf{7 0} \pm \mathbf{1 6}$	7.5

The values
of the resonances masses and widths are close to the values shown in Table 1.
The values of S.D. significantly increase and are not less than 5 everywhere

The distributions of the emission angles of π^{+}- mesons
from the resonance decay (in the helicity coordinate system).

These distributions are obtained subtracting the corresponding background curves
for intense effects using all the criteria.

All distributions are isotropic

Therefore, the most probable spin values for these resonances are equal to 0 .

Comparison to other experiments

The experiment where the so-called ABC-effect was observed. It is the peak at the mass of $350 \mathrm{MeV} / \mathrm{c}^{2}$ that was found in various nuclear reactions.

We have observed such effect in the reaction

$$
n p \rightarrow d \pi^{+} \pi^{-} \text {- at } P_{n}=(1,73 \pm 0,04) \mathrm{GeV} / \mathrm{c}
$$

in the system of $\pi^{+} \pi^{-}$- mesons
at the mass of $\grave{I} \pi_{\pi^{+} \pi^{-}} \approx 400 \mathrm{MeV} / \mathrm{c}^{2}$.

The resonance peculiarity was found
in dC-interactions
at the momentum of $2.75 \mathrm{MeV} / \mathrm{c}$ per nucleon
in the effective mass spectrum of 2γ at the mass $M_{\gamma \gamma}=350 \mathrm{MeV} / \mathrm{c}^{2}$

> (Abraamyan)

There were found the effects at the $M_{\gamma \gamma}=350 \mathrm{MeV} / \mathrm{c}^{2}$
in $2-m$ propane bubble chamber.
The peaks in the momentum distribution of γ 's
PDG - data

$f_{0}(600)$ BREIT-WIGNER MASS OR K-MATRIX POLE PARAMETERS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
(400-1200) OUR ESTIMATE				
513 ± 32	22 MURAMATSU 02		CLEO	$e^{+} e^{-} \approx 10 \mathrm{GeV}$
- - We do not use the following data for averages, fits, limits, etc. - .				
$478{ }_{-23}^{+24} \pm 17$	AITALA	018	E791	$D^{+} \rightarrow \pi^{-} \pi^{+} \pi^{+}$
$\left.563 \pm \begin{array}{r}+58 \\ -20\end{array}\right)$	${ }^{23}$ ISHIDA	01		$r(3 S) \rightarrow r_{\pi \pi}$
555	24 ASNER	00	CLE2	$\tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}$
540 ± 36	ISHIDA	008		$\rho \bar{p} \rightarrow \pi^{0} \pi^{0} \pi^{0}$
750 ± 4	ALEKSEEV	99	SPEC	$1.78 \pi^{-} \rho_{\text {polar }} \rightarrow \pi^{-} \pi^{+} n$
744 ± 5	ALEKSEEV	98	SPEC	$1.78 \pi^{-}{ }_{\text {polar }} \rightarrow \pi^{-} \pi^{+} n$
759 ± 5	25 TROYAN	98		$5.2 n p \rightarrow n p \pi^{+} \pi^{-}$
780 ± 30	ALDE	97	GAM2	$450 \rho p \rightarrow p p \pi^{0} \pi^{0}$
585 ± 20	26 ISHIDA	97		$\pi \pi \rightarrow \pi \pi$
761 ± 12	27 SVEC	96	RVUE	$6-17 \pi N_{\text {polar }} \rightarrow \pi^{+} \pi^{-} N$
~ 860	28,29 TORNQVIST	96	RVUE	$\pi \pi \rightarrow \pi \pi, K \bar{K}, K \pi, \eta \pi$
$1165+50$	30,31 ANISOVICH	95	RVUE	$\begin{aligned} & \pi^{-} \rho \rightarrow \pi^{0} \pi^{0} n, \\ & \quad \rho \rho \rightarrow \pi^{0} \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \eta, \pi^{0} \eta \eta \end{aligned}$
~ 1000	32 ACHASOV	94	RVUE	$\pi \pi \rightarrow \pi \pi$
$414+20$	27 AUGUSTIN	89	DM2	

that resonances produced
at the masses of $M_{\gamma \gamma}=350 \mathrm{MeV} / \mathrm{c}^{2}$ decay into 2γ 's
The scalar pole was found by PWA of $K^{0}{ }_{s}$ - mesons decay into 2π-mesons and 4 leptons at the mass of $489 \mathrm{MeV} / \mathrm{c}^{2}$.

But the width of the resonance

is very large.
As well the pole
in the decay $D^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
was observed
in the system of $\pi^{+} \pi^{-}$
at the mass of $478 \mathrm{MeV} / \mathrm{c}^{2}$.

Phenomenological description of the scalar resonances series

both our observed resonances and the data presented in PDG

The analysis of all data shows that the distance between resonances varies in a rather complicated manner. It leads to an idea about the existence of several trajectories

The following form
was taken for the approximation:
$M_{n}=M_{0}+x \frac{n(n+1)}{2}$ (1) where,
describing the augmentative masses of resonances. M_{0} - initial excitation of the trajectory;

We have constructed 4 resonances series
Whose values were determined M_{0}^{i} - the initial excitations
x^{i} - the excitations of clusters i is number of series
x - parameter of the excitation,
n - number of the resonance on the trajectory The term of the form $\frac{n(n+1)}{2}$ arises because of the sum of the natural numbers from 1 to n

traject $1 \quad M_{n}=305+120 \frac{n(n+1)}{2}$						traject $2 \quad M_{s}=350+136 \frac{n(n+1)}{2}$					
n	n(n+1)/2	M_{n} (cal) c	M	\pm	AM(exp)	n	n($\mathrm{n}+1) / 2$	$\mathbf{M}_{\mathrm{n}_{-} \text {calc }}$	M_exp	\pm	AM_exp
0	0	305				0	0	350	353	\pm	6
1	1	425	408	\pm	5	1	1	486	489	\pm	4
2	3	655	678	\pm	3	2	3	758	764		18
3	6	1025	1036	\pm	10	3	6	1166	1168	\pm	11
4	10	1505	1505	\pm	6	4	10	1710	1724	\pm	7
5	15	2105	2103	\pm	8	5	15	2390	2330	\pm	20
traject $3 M_{n}=420+158 \frac{n(n+1)}{2}$							traject $4 \quad M_{n}=485+170 \frac{n(n+1)}{2}$				
π	$\mathrm{n}(\mathrm{n}+1) / 2 \mathbf{M}_{\mathrm{n} \text { _calc }}$		M_exp \pm AM_exp			n	$n(\mathrm{n}+1) / 2$	$\begin{array}{\|r\|} \mathrm{M}_{\mathrm{n}_{1} \text { calc }} \\ 485 \end{array}$	M_exp	\pm	AM exp
0	0	420	408	\pm	5	0	0		489		AM_ $_{4}$
1	1	578	585	\pm	6	1	1	655	678	\pm	3
2	3	894	876	\pm	4	2	3	995	980	\pm	10
3	6	1368	1370	\pm		3	6	1505	1505	\pm	6
4	10	2000	1992	\pm	16	4	10	2185	2189	\pm	13

Therefore the mass of the $n^{\text {th }}$ - resonance can be presented schematically in the form
of the sum of the series
excited by the force x

Sum all series we get the form (1).

Phenomenological description of the scalar resonances series

both our observed resonances and the data presented in PDG

The constructed trajectories are shown in Fig, where
the value $K=\frac{n(n+1)}{2}$ is plotted on abscissa, the masses of $f_{0}\left(\sigma_{0}\right)$ - mesons are plotted on ordinate axis our data are pointed as + , data from PDG as X. The experimental values are shown to the right in the figure.

The values of the experimental errors are less than the sizes of markers

In the tables and in Fig one can see very good coincidence between the calculation by the formula (1) and experimental data ${ }_{1168}$ in the whole range of $\pi^{+} \pi^{-}$- masses ${ }_{\substack{980 \\ 876}}^{1036}$ from threshold ($280 \mathrm{MeV} / \mathrm{c}^{2}$) ${ }_{764}^{986}$ up to the mass of $2400 \mathrm{MeV} / \mathrm{c}^{2}$.
678 585
489
408 ${ }_{353}^{408}$

Therefore it is possible to think that the resonance of the number n the of cluster excitations and gives

Conclusion

We have observed the series of resonances in the system $\pi^{+} \pi^{-}$mesons
from the reaction $\boldsymbol{n} \boldsymbol{p} \rightarrow \boldsymbol{n} \boldsymbol{p} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$at $P_{n}=(5.20 \pm 0.12) \mathrm{GeV} / \mathrm{c}$
that have the quantum numbers of σ_{0} meson $0^{+}\left(0^{++}\right)$
and the masses in the range of $M \leq 1200 \mathrm{MeV} / \mathrm{c}^{2}$.
The data about such resonances are practically absent.
$>$ The widths of the observed peculiarities are sufficiently small.
It sharply contradicts to the experimental data processed by PWA
that give the widths equal to some hundreds $\mathrm{MeV} / \mathrm{c}^{2}$.
We could not observe such wide resonances in our experiment.
$>$ The statistical significance is sizeable ($\geq 5 S . D$.)
due to the criterion $\cos \Theta_{p}^{*}>0$
and selection of events for corresponding (for each effect) ranges of $X_{\pi^{+} \pi^{-}}^{*}$
\rightarrow The resonances are evidently produced in the scattering of π^{+}on π^{-}-mesons. And at the same time, it is accompanied by a well-ordered excitation of scalar fields.
$>$ The study of σ_{0} - mesons in a hot and dense matter will give much information about the properties of this matter.
Therefore the study of σ_{0}-mesons is extremely important both
for NICA/MPD project and for
experiments with nuclear beams at all accelerators of the world.

Acknowledgement

We thank prof. V.L. Lyuboshitz for the persistent help during discussions on physical results, prof. A.I. Malakhov and prof. S. Vokal for the interest to this work and for the presentation of the obtained results, dr. M.V.Tokarev - for the persistent discussions, dr. P.Palazzi - for the interest to our work.

THANK YOU
for Your attention

