XIX INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS"

QCD test of z-scaling for jet production at Tevatron & RHIC

T.Dedovich & M.Tokarev JINR, Dubna

XIX International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", JINR, Dubna, Russia, September 29 - October 4, 2008

Contents

- Motivation & goals
- z-Scaling (ideas, definitions, properties,...)
- > Tevatron, RHIC jet data & z presentation
- QCD test of z-scaling
- Conclusions

Development of a universal phenomenological description of inclusive cross sections of particles produced at high energies to search for:

- new physics phenomena in elementary processes (quark compositeness, fractal space-time, extra dimensions, ...)
- signatures of exotic state of nuclear matter (phase transitions, quark-gluon plasma, ...)
- complementary restrictions for theory (nonperturbative QCD effects, Standard Model, ...)

Analysis of new experimental data on jet production at Tevatron and RHIC

to verify properties and QCD test of z-scaling.

Principles & Symmetries

- Relativity (special, general, scale,...)
- ➢ Gauge invariance (U(1), SU(2), SU(3),...)
- Self-similarity (hydro & aerodynamics, point explosions, critical phenomena,...)
- Fractality (scale dependence,...)
- Locality (constituent level of interactions,...)

Guiding principles to discover new laws in Nature at small scales

		s ^{1/2}	р _т	scale
		(GeV)	(GeV/c)	(fm)
RHIC	(pp, AA)	50-500	~50	$\sim 4 \cdot 10^{-3}$
Tevatron	(pp)	1960	~500	$\sim 4 \cdot 10^{-4}$
LHC	(pp, AA)	14000	~5000	$\sim 4 \cdot 10^{-5}$

XIX ISHEPP

Scaling analysis in high energy interactions

transverse mass Feynman variable radial scaling variable light-cone variable Bjorken variable KNO variable

These scaling regularities have restricted range of validity
 Violation of the scaling laws can be indication of new physics

z-Scaling: it provides universal description of inclusive particle cross sections over a wide kinematical region (central+fragmentation region, $p_T > 0.5 \text{ GeV/c}$, $s^{1/2} > 20 \text{ GeV}$)

Locality of hadron interactions

Fractality of hadron interactions

- Fractality is a specific feature connected with substructure of the interacting objects (hadrons and nuclei).
 It is connected with self-similarity of constituent interactions over a wide scale range.
- Fractality of soft processes was investigated by A.Bialas, R.Peshchanski, I.Dremin, E.DeWolf,...
- Fractality of hard processes is reflected in the z-scaling via the variable z.

z is a fractal measure attributed to any inclusive reaction: $z(\Omega) \rightarrow \infty$ if resolution $\Omega^{-1} \rightarrow \infty$

Scaling variable z

$$Z = z_0 \cdot \Omega^{-1}$$

$$Z_0 = \frac{S_{\perp}^{1/2}}{(dN_{ch}/d\eta|_0)^c m}$$

$$M_{\mu} \delta_{\mu} = \frac{S_{\perp}^{1/2}}{(dN_{ch}/d\eta|_0)^c m}$$

- > Ω^{-1} is the minimal resolution at which a constituent subprocess can be singled out of the inclusive reaction
- > $s_{\perp}^{1/2}$ is the transverse kinetic energy of the subprocess consumed on production of $m_1 \& m_2$
- $> dN_{ch}/d\eta|_0$ is the multiplicity density of charged particles at $\eta = 0$
- > c is a parameter interpreted as a "specific heat" of created medium
- > m is an arbitrary constant (fixed at the value of nucleon mass)

 $\Omega = (1 - x_1)^{\delta_1} (1 - x_2)^{\delta_2} (1 - y_1)^{\epsilon_1} (1 - y_2)^{\epsilon_2} \quad \delta_1, \delta_2, \epsilon_1, \epsilon_2 \text{ - structural parameters}$

Principle of minimal resolution: The momentum fractions x_1, x_2 and y_1, y_2 are determined in a way to minimize the resolution Ω^{-1} of the fractal measure $z(\Omega)$ with respect to all constituent subprocesses taking into account the momentum conservation law

$$(x_1P_1+x_2P_2-p/y_1)^2 = (x_1M_1+x_2M_2+m_2/y_2)^2.$$

Extremum conditions:

$$\begin{cases} \partial \Omega / \partial x_1 |_{y_1 = y_1(x_1, x_2, y_2)} = 0 \\ \partial \Omega / \partial x_2 |_{y_1 = y_1(x_1, x_2, y_2)} = 0 \\ \partial \Omega / \partial y_2 |_{y_1 = y_1(x_1, x_2, y_2)} = 0 \end{cases}$$

JINR

$$pp/p\overline{p}: \, \delta_1 \!\!=\!\! \delta_2 \!\equiv\!\! \delta, \, \epsilon_1 \!\!=\!\! \epsilon_2 \!\!\equiv\!\! \epsilon_F, \, m_1 \!\!=\!\! m_2$$

Scaling function $\Psi(z)$

- > s^{1/2} is the collision energy.
- > $dN/d\eta$ is the pseudorapidity multiplicity density at η .
- > σ_{inel} is the inelastic cross section.
- > $J(p_T,p_z; z,\eta)$ is the corresponding Jacobian.
- \sim Ed³ σ /dp³ is the inclusive cross section.

The variable z and the function $\Psi(z)$ are expressed via momenta and masses of the colliding and produced particles, multiplicity density, and inclusive cross section.

Normalization of $\Psi(z)$

The scaling function $\Psi(z)$ is probability density to produce an inclusive particle with the corresponding fractal measure z.

Transverse kinetic energy $s^{1/2}$

$$s_{\perp}^{1/2} = \underbrace{y_{1}(s_{\lambda}^{1/2} - M_{1}\lambda_{1} - M_{2}\lambda_{2}) - m_{1}}_{\text{energy consumed}} + \underbrace{y_{2}(s_{\lambda}^{1/2} - M_{1}\chi_{1} - M_{2}\chi_{2}) - m_{2}}_{\text{energy consumed}}$$

$$energy consumed$$
for the inclusive particle m_{1}

$$Decomposition: x_{1,2} = \lambda_{1,2} + \chi_{1,2}$$

$$\lambda_{1,2} = \kappa_{1,2}/y_{1} + v_{1,2}/y_{2}$$

$$\kappa_{1,2} = \frac{(P_{2,1}P)}{(P_{2}P_{1})}, v_{1,2} = \frac{M_{2,1}m_{2}}{(P_{2}P_{1})}$$

$$\chi_{1,2} = (\mu_{1,2}^{2} + \omega_{1,2}^{2})^{1/2} \mp \omega_{1,2}$$

$$\mu_{1,2}^{2} = \alpha^{\pm 1}(\lambda_{1}\lambda_{2} + \lambda_{0})\frac{1 - \lambda_{1,2}}{1 - \lambda_{2,1}}$$

$$\omega_{1,2} = \mu_{1,2}U, U = \frac{\alpha - 1}{2\sqrt{\alpha}}\xi, \alpha = \frac{\delta_{2}}{\delta_{1}}$$

$$\lambda_{0} = \overline{v_{0}}/y_{2}^{2} - v_{0}/y_{1}^{2}$$

$$k_{2}^{2} = (\lambda_{1}\lambda_{2} + \lambda_{0})/[(1 - \lambda_{1})(1 - \lambda_{2})]$$

$$s_{\lambda} = (\lambda_{1}P_{1} + \lambda_{2}P_{2})^{2}$$

$$s_{\lambda} = (\chi_{1}P_{1} + \chi_{2}P_{2})^{2}$$

- > Energy independence of $\Psi(z)$ (s^{1/2} > 20 GeV)
- > Angular independence of $\Psi(z) (\theta_{cms} = 3^0-90^0)$
- > Multiplicity independence of $\Psi(z)$ (dN_{ch}/d\eta=1.5-26.)
- > Power law, $\Psi(z) \sim z^{-\beta}$, at high z (z >4)
- > Flavor independence of $\Psi(z)$ (π ,K, ϕ , Λ ,...,D,J/ ψ ,B, Υ ,...)
- Saturation of $\Psi(z)$ at low z (z<0.1)

These properties reflect self-similarity, locality, and fractality of the hadron interaction at a constituent level. It concerns the structure of the colliding objects, interactions of their constituents, and fragmentation process.

I.Zborovsky (this conference)

Spectra of π^0 mesons in pp at RHIC

- Good agreement between NLO pQCD calculations and data
- Confirmation that pQCD can be used to extract PDFs from RHIC data

Spectra of π^0 mesons in pp at ISR & RHIC

Test of pQCD + phenomenology (PDFs, FFs, μ_R,...)
 Test of z-scaling + exp. uncertainties (σ_{in}, dN_{ch}/dη,...)

Self-similarity of hadron production in pp at high energies

Jets at Hadron Colliders

Batavia, Illinois

Upton, Long Island, New York

CERN

XIX ISHEPP

M.Tokarev

Era of QCD precision measurements at hadron colliders

What is jet?

- > Jet is strong correlated group of particles in space-time.
- > Jet is a product of hard scattering of hadron constituents.
- Definition of jet in experiment and theory is a basis for understanding of transition mechanism from quark and gluon to hadronic degrees of freedom.
- QCD evolution schemes based on DGLAP, BFKL, CCFM equations are widely used.
- Large systematic errors in theoretical calculations is due to uncertainties of pdf's and mainly to gluon distribution function.

Experimental verification and QCD test of z-scaling of jet production in hadron collisions to search for new phenomena and establish new constraints (gluons, Q²-evolution etc.) on theory.

Jet Topology

z-Scaling & Jets at Tevatron in Run I

Self-similarity of jet production in proton-antiproton collisions.

z-Scaling & Jets at Tevatron in Run I

Self-similarity of jet production in proton-antiproton collisions

z-Scaling & Jets at Tevatron in Run II

XIX ISHEPP

z-Scaling & Jets at Tevatron in Run II

z-Scaling & Jets at Tevatron in Run II

Self-similarity of jet production in proton-antiproton collisions

XIX ISHEPP

First jets in pp at STAR

TPC for charged hadrons+EMC for e-m showers

1) Jets reconstruction - midpoint cone algorithm (Tevatron II) seed energy = 0.5 GeV, cone angle R = 0.4 in $\eta-\phi$ splitting/merging fraction f=0.5

2) Trigger used in this analysis - High Tower:

 $E_T > 2.4$ GeV deposited in one tower ($\Delta \eta \ x \ \Delta \phi$) = (0.05 x 0.05) + additional requirement of BBC coincidence.

3) Cuts on:

- charged tracks $|\eta \mid$ < 1.6 and p_T >0.1 GeV/c
- jets: p_T jet > 5 GeV/c , 0.2< jet η (det) <0.8
- background: E_{jet}(neutral)/E_{jet}(total) < 0.9 (2004) and < 0.8 (2003)
- |z-vertex| < 75cm (2003) and < 60cm (2004)
- tower E_T>3.5 GeV software threshold (only 2004 cross section)

M.Miller, QM'05, NPD2005, PANIC'05, hep-ex/0604001

XIX ISHEPP

Hard scattering at RHIC and NLO pQCD

JINR

XIX ISHEPP

z-Scaling & Jets at RHIC

XIX ISHEPP

NLO QCD ingredients

 \geq

QCD test of z-scaling

- QCD is basic theory for calculations of hadron interactions in terms of quarks and gluons.
- > Perturbative expansion is under control (LO, NLO, ...).
- Non-perturbative effects PDFs, FFs, μ_R , μ_F , μ_H , are partially under control.
- Correct extrapolation in low and high (x,p_T) range is restricted by available data (e⁺e⁻, DIS,...).
- Additional constraints on PDFs and FFs are needed to confirm their universality (gluons, flavor, ...).
- Soft regime (multiple interactions, ...).
- > A lot of data are analyzed in framework of z–presentation.
- > New confirmations from RHIC and Tevatron are obtained.
- Can NLO QCD describe z-scaling in soft and hard regime ?

.

Jet NLO QCD spectra in pp & PDFs

- > Strong dependence of spectra on energy $s^{1/2}$ at high p_T .
- > Sensitivity to PDFs (MRST) & μ_R , μ_F , μ_H scales.
- > NLO QCD calc. results are in agreement with available data.
- Different extrapolation of spectra predicted by NLO QCD and z-scaling for high transverse momenta.

Jet NLO QCD spectra in pp & PDFs

- > Strong dependence of spectra on energy $s^{1/2}$ at high p_T .
- > Sensitivity to PDFs (CTEQ) & μ_R , μ_F , μ_H scales.
- > NLO QCD calc. results are in agreement with available data.
- Different extrapolation of spectra predicted by NLO QCD and z-scaling for high transverse momenta.

PDFs

PDFs (CTEQ, MRST) & FFs (KKP) & scales (μ_R, μ_F, μ_H) are model dependent ingredients of QCD fit of exp. data
 z-Scaling can give additional constraints on PDFs & FFs

$z-p_T$ plot for jet production

Kinematical regions are of more preferable for searching for new physics at RHIC, Tevatron and LHC.

Summary

- Analysis of new Tevatron and RHIC data on transverse spectra of jet production produced in pp and pp collisions in z-presentation is performed.
- New confirmation of properties of z-scaling (energy and angular independence) are obtained.
- z-Scaling of jet production at high energies manifests self-similarity, locality and fractality of hadron interactions at a constituent level.
- QCD test of z-scaling is performed: z-scaling gives restriction on the asymptotic behavior of jet spectra in high-p_T region.
- The approach is useful for searching for new physics phenomena in particle production at RHIC, Tevatron, and LHC.

"Baldin Autumn"

Thank You for Your Attention !

XIX ISHEPP