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Formula of probability of vacuum pair creation by a constant
electric field (Shcwinger, 1951)

ω =
e2E 2

4π3
exp{−

Ecr

E
}, Ecr =

m2c3

e~
,

J. Schwinger, Phys. Rev. 82, 664 1951

Critical values of field strength and intensity:

Ee = 1.3 · 1016 V

cm
, Ie ∼ 1029 W

cm2
, for electrons

Eπ = 1021 V

cm
, Iπ ∼ 1039 W

cm2
, for pions
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Laser intensity:
the achieved level I ∼ 1023 W

cm2

prognosis (Paris, ZettaWatt laser) : I ∼ 1028 W

cm2

Experimental verification is lacking, because of too high value
of the critical field strength.
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Very different situation occurs when the electric field is time-
dependent.

It was shown in previous works on electron- positron pairs
creation. the main density is n = 107λ−3 or n = 1020cm−3.
Registration of created plasma – by two- photon annihilation
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In the present work we make the first step on the way of
theoretical research of PAP vacuum creation in the
nonstationary chromo- electric field of arbitrary polarization.
The corresponding kinetic equation (KE) will be derived below
on the strict non- perturbation dynamics basis. We will
restrict ourselves here by consideration of the nonstationary
Schwinger effect in vacuum only leaving in a site the analysis
of this effect in some plasma-similar medium. We use the
oscillator representation (OR) for the construction of the
kinetic theory (initially, this representation was be suggested
in the scalar QED (Pervushin et. Al.).
V.N. Pervushin et. al., Int. J. Mod. Phys. A.2005, V20;
hep-ph/0307200.
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Let us consider the QED system in the presence of an external
quasi-classical spatially homogeneous time-dependent field of
arbitrary polarization with the 4-potential Aµ(t) = (0, ~A(t))

and the corresponding field strength ~E (t) = −~̇A(t).
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Oscillator representation

Let us consider the QED system in the presence of an external
quasi-classical spatially homogeneous time-dependent field of
arbitrary polarization with the 4-potential Aµ(t) = (0, ~A(t))

and the corresponding field strength ~E (t) = −~̇A(t).

The Lagrange function is

L =
i

2
{ψγµDµΨ− (D∗

µψ)γµΨ} −mψψ. (1)
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Oscillator representation

Let us consider the QED system in the presence of an external
quasi-classical spatially homogeneous time-dependent field of
arbitrary polarization with the 4-potential Aµ(t) = (0, ~A(t))

and the corresponding field strength ~E (t) = −~̇A(t).

The Lagrange function is

L =
i

2
{ψγµDµΨ− (D∗

µψ)γµΨ} −mψψ. (1)

The corresponding equations of motion are

(iγµDµ −m)ψ = 0,

ψ(iγµ←−D ∗

µ + m) = 0. (2)
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In the considered case, the system is space homogeneous and
nonstationary. Therefore the transition in the Fock space can
be realized on the basis functions φ = exp (±ikx) and creation
and annihilation operators become the time dependent one,
generally speaking. Hence, we have the following
decompositions of the field functions in the discrete
momentum space :
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Oscillator representation

In the considered case, the system is space homogeneous and
nonstationary. Therefore the transition in the Fock space can
be realized on the basis functions φ = exp (±ikx) and creation
and annihilation operators become the time dependent one,
generally speaking. Hence, we have the following
decompositions of the field functions in the discrete
momentum space :

ψ(x) =
1√
V

∑

~k

∑

α=1,2

{

e
i~k~x

aα(~k , t)uα(k, t) + e
−ikx

b
+
α(k, t)vα(k, t)

}

,

ψ̄(x) =
1√
V

∑

k

∑

α=1,2

{e−ikx
a

+
α(k, t)ūα(k, t) + e

ikx
bα(k, t)v̄α(k, t)}.(3)
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The nearest aim of OR is derivation of the equations of motion
for the creation and annihilation operators on the basis of the
primary equations (2) and the use of the free u, v -spinors as
the basic functions with the natural substitution of the
canonical momentum with the corresponding kinematic one.
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Oscillator representation

The nearest aim of OR is derivation of the equations of motion
for the creation and annihilation operators on the basis of the
primary equations (2) and the use of the free u, v -spinors as
the basic functions with the natural substitution of the
canonical momentum with the corresponding kinematic one.

Thus, the following ”free-like” equations for the spinors are
postulated in OR:

[γp −m]u(k, t) = 0,

[γpc + m]v(k, t) = 0, (4)

where p0 = ω(p) =
√

m2 + p2.
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Oscillator representation

The decompositions (3) and the relation for u, v -spinors lead
to the diagonal form of the Hamiltonian at once (before
second quantization)
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The decompositions (3) and the relation for u, v -spinors lead
to the diagonal form of the Hamiltonian at once (before
second quantization)

H(t) =
∑

k,α

ω(~k, t)
[

a+
α (k, t)aα(~k , t)− bα(−~k, t)b+

α (−~k, t)
]

.

(5)
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Oscillator representation

The decompositions (3) and the relation for u, v -spinors lead
to the diagonal form of the Hamiltonian at once (before
second quantization)

H(t) =
∑

k,α

ω(~k, t)
[

a+
α (k, t)aα(~k , t)− bα(−~k, t)b+

α (−~k, t)
]

.

(5)

Such form of the Hamiltonian is necessary for interpretation of
the time dependent operators a+, a (and b+, b) as the
operators of creation and annihilation of quasi-particles
(anti-quasi-particles). Thus, this way results to QP
representation at once.
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Kinetic equation

In order to get KE for time dependent electric fields of
arbitrary polarization, let us introduce the one particle
correlation functions of electrons and positrons

fαβ(k, t) =< a+
β (k, t)aα(k, t) >,

f c

αβ(k, t) =< bβ(−k, t)b+
α (−k, t) >, (6)
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In order to get KE for time dependent electric fields of
arbitrary polarization, let us introduce the one particle
correlation functions of electrons and positrons

fαβ(k, t) =< a+
β (k, t)aα(k, t) >,

f c

αβ(k, t) =< bβ(−k, t)b+
α (−k, t) >, (6)

the auxiliary correlation functions was introduced

f
(+)

αβ (k, t) =< a
+
β (k, t)b+

α(−k, t) >,

f
(−)

αβ (k, t) =< bβ(−k, t)aα(k, t) > . (7)
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Differentiation over time leads to equations

ḟ = [f ,U(1)]−
(

U(2)f
(+) + f (−)U(2)

)

,

ḟ c = [f c ,U(1)] +
(

f (+)U(2) + U(2)f
(−)

)

, (8)

ḟ (+) = [f (+),U(1)] +
(

U(2)f − f cU(2)

)

+ 2iωf (+),

ḟ (−) = [f (−),U(1)] +
(

fU(2) − U(2)f
c
)

− 2iωf (−), (9)
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Differentiation over time leads to equations

ḟ = [f ,U(1)]−
(

U(2)f
(+) + f (−)U(2)

)

,

ḟ c = [f c ,U(1)] +
(

f (+)U(2) + U(2)f
(−)

)

, (8)

ḟ (+) = [f (+),U(1)] +
(

U(2)f − f cU(2)

)

+ 2iωf (+),

ḟ (−) = [f (−),U(1)] +
(

fU(2) − U(2)f
c
)

− 2iωf (−), (9)

The Eqs.(8) and(9) represent the closed system of 16 ordinary
differential equations. Accounting of charge symmetry allows
to reduce this number up to 12.
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it can obtain the closed KE in the integro-differential form

ḟ (t) = [f (t),U(1)] − U(2)(t)S(t)

t
∫

t0

dt
′

S
+(t′)[U(2)(t

′)f (t′)−

f
c(t′)U(2)(t

′)]S(t′)S+(t′)e2iθ(t,t′)

− S(t)

t
∫

t0

dt
′

S
+(t′)[f (t′)U(2)(t

′) − U(2)(t
′)f c(t′)]

· S(t′)S+(t′)U(2)(t)e
−2iθ(t,t′)

, (10)
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In comparison with the KE for the known case of the linear
polarized field

A(t) = {0, 0,A3(t) = A(t)}, (11)

KE (10) has more complicated form because nontrivial spin
effects.
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Perturbation theory

Let us write the source term (the right hand side) of KE (10)
in the leading (second) order of the perturbative theory with
respect to weak external field. It means, that the adiabaticity
parameter [Popov] is large
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Perturbation theory

Let us write the source term (the right hand side) of KE (10)
in the leading (second) order of the perturbative theory with
respect to weak external field. It means, that the adiabaticity
parameter [Popov] is large

γ =
mν

eEm

≫ 1, (12)
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In the considering leading approximation, the diagonal terms
of the correlation functions U if small in comparison with unit,
fαα and the non-diagonal terms fαβ ∼ E 2 for α 6= β, that
allows to omit the corresponding contribution in the source
term,
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Perturbation theory

In the considering leading approximation, the diagonal terms
of the correlation functions U if small in comparison with unit,
fαα and the non-diagonal terms fαβ ∼ E 2 for α 6= β, that
allows to omit the corresponding contribution in the source
term,
then

ḟ (t) =

t
∫

t0

Sp{U0
(2)(t)U

0
(2)(t

′)} cos 2θ(t, t ′). (13)
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As it follows from correlation functions Ui

Sp{U0
(2)(t)U

0
(2)(t

′)} =
e2

2ω4
0

{

E(t)E(t′)ω2
0(E(t)p)(E(t′)p)

}

= Φ(p|t, t′). (14)
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As it follows from correlation functions Ui

Sp{U0
(2)(t)U

0
(2)(t

′)} =
e2

2ω4
0

{

E(t)E(t′)ω2
0(E(t)p)(E(t′)p)

}

= Φ(p|t, t′). (14)

If at the initial time before switch-on of an electric field the
particles are absent, we can write the total density

n(t) =
1

4π3

∫

d
3
p

t
∫

t0

dt1

t1
∫

t0

dt2Φ(p|t1, t2) cos [2ω0(t1 − t2]. (15)
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In the case of the linear polarization (11), from Eqs. (14) and
(15) it follows the well known result [Prozorkevich et. al.,
Bulanov et.al.]:

n(t) =
1

4π3

∫

d3p

∣

∣

∣

∣

∣

∣

t
∫

t0

dt ′λ(t ′) exp (2iω0(t − t ′))

∣

∣

∣

∣

∣

∣

2

, (16)
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In the case of the linear polarization (11), from Eqs. (14) and
(15) it follows the well known result [Prozorkevich et. al.,
Bulanov et.al.]:

n(t) =
1

4π3

∫

d3p

∣

∣

∣

∣

∣

∣

t
∫

t0

dt ′λ(t ′) exp (2iω0(t − t ′))

∣

∣

∣

∣

∣

∣

2

, (16)

where λ(p, t) = eE (t0ε⊥/2ω
2
0 and ε2

⊥
= m2 + p2

⊥
, p⊥ is the

transversal momentum relatively of the vector E(t).
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In the case of the linear polarization (11), from Eqs. (14) and
(15) it follows the well known result [Prozorkevich et. al.,
Bulanov et.al.]:

n(t) =
1

4π3

∫

d3p

∣

∣

∣

∣

∣

∣

t
∫

t0

dt ′λ(t ′) exp (2iω0(t − t ′))

∣

∣

∣

∣

∣

∣

2

, (16)

where λ(p, t) = eE (t0ε⊥/2ω
2
0 and ε2

⊥
= m2 + p2

⊥
, p⊥ is the

transversal momentum relatively of the vector E(t).

The relations (14) and (15) are convenient for the numerical
analysis.
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Conclusion

Thus, it was shown that the oscillator representation may be used
in the spinor QED for the KE derivation in the rather non-trivial
case of the time-dependent electric field of arbitrary polarization.
The obtained KE’s can be used for investigation of EPP creation in
strong laser fields of optical and X-ray range. The used method
opens prospects for further generalization ( e.g., the account of a
constant magnetic field).
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