- A Report from the PHENIX Experiment

@ XIX International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics & Quantum Chromodynamics" Dubna, Russia September 30, 2008

> Kiyoshi Tanida (Kyoto Univ./RIKEN) for the PHENIX Collaboration

What are we aiming at?

- To answer the question: "Where the proton spin comes from?"
- Background: Lepton DIS
 - Quark spin carries only 20-30% of proton spin
 →spin puzzle
- What carries the rest?
 - Gluon?
 - Orbital angular momentum?

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$

$$I$$
RHIC spin

What we can't know from DIS

- Photon mediated \rightarrow sensitive to charge²
 - -u:d:s:g=4:1:1:0
 - Gluon is invisible!

(c.f., indirect methods: Q² evolution, photon-gluon fusion)

Can we see gluons directly?
 → Yes, what we need is a

Proton-Proton collider

What we measure?

$$A_{LL} = \frac{\sigma(++) - \sigma(+-)}{\sigma(++) + \sigma(+-)}$$

~ (parton pol.)²× (a_{LL} in parton reaction)

How can we access gluons?

Typical parton level diagrams LO

- What we actually measure are not partons, but fragmented hadrons
 - Come from different mix of partons
 - Parton information e.g., Bjorken x is obscured

Some examples

- Direct photon: $g + q \rightarrow \gamma + q$
 - No fragmentation
 - Small contamination (e.g. $\bar{q}q \rightarrow \gamma\gamma$)

→ golden channel

- Jet, high- p_T hadron production
 - Mix of all subprocesses
 - LO \rightarrow highest statistics

→Good measurement with lower luminosity

- Heavy quarks (charm, bottom)
 gg→ qq is the main process at RHIC
- W sensitive to quark flavors
 - e.g., W⁺ comes from $\overline{d}u$

The Relativistic Heavy Ion Collider accelerator complex at Brookhaven National Laboratory

RHIC *p*+*p* accelerator complex

The polarimeters are experimental devices

PHENIX Experiment

Pioneering High Energy Nuclear Interaction EXperiment

- University of S(o Paulo, S(o Paulo, Brazil
- Academ ia Sinica, Taipei 11529, China
- China Institute of Atom ic Energy (CIAE), Beijing, P. R. China
- Peking University, Beijing, P. R. China
- Charles University, Faculty of Mathematics and Physics, KeK arlovu 3, 12116 Prague, Czech Re public
- Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Prague, Czech Republic
- Institute of Physics, A cademy of Sciences of the Czech Republic, Na Slovance 2, 182 21 P raque, Czech Republic
- Laboratoire de Physique Corpus culaire (LPC), Un iversite de Clermont-Ferrand, 63 170 Aubiere, Clermont-Ferrand, France
- Dapnia, CEA Sa clay, Bat. 703, F-91191 Gif-sur-Yvette, France
- IPN -Orsay, Un iversite Paris Sud, CNRS -IN2 P3, BP 1, F -91406 Orsay, Fran
- Laboratoire Leprince-Ring uet, Ecole Polytechnique, CNRS -IN2 P3, Rout Saclay, F-91128 P alaiseau, France
- SUBATECH, Ec le des Mines at Nantes, F-44307 Nantes France
- University of Mu enster, Mu enster, Ge rma ny
- KFKI Research Institute for Particle and Nu clear Physics at the Hungari Academy of Sciences (MTA KFK I RM KI), Budapest, Hungary
- Debrecen U niversity, De brecen, Hungary
- Елыхлыз Lor‡nd University (ELTE), Budapest, Hungary
- Banaras H ind u Un iversity, B anaras, India
- Bhab ha A tom ic Research Centre (BARC), Bomb ay, India
- We izmann Institute, Rehovot, 76100, Israel
- Center for Nuclear Study (CNS Tokyo), University of Tokyo, Tanashi, Tokyo 188. Japa n
- Hiroshima University, Higashi-Hiroshima 739, Japan
- KEK H igh En ergy A ccelerator R ese arch O rganization, 1-1 Oh o, T sukub a, **13 Countries:** 62 Institutions: 550 Participants* Ibaraki 305-0801, Japan
- Kyoto U niversity, Kyoto, Japan
- Nagasa ki Institute of Applied S cience, Nagasaki-shi, Nagasaki, Japan
- RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 3 51-0198. Jap an
- RIKENPBN L Research Center, Japan, located at BNL
- Physics D epartment, Rikkyo U niversity, 3-34-1 Nishi-Ikebukuro, Toshima, Tokvo 1 71-8501, Japan
- Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
- University of Tsukuba. 1-1-1 Tenno dai. Tsuku ba-shi Ibaraki-ken 305-8577. Japan
- Wa seda U niversity, Tokyo, Japan
- Cyclotron A pplication Laboratory, KAE RI, Seoul, South Korea
- Kang nung N ational Un iversity, Kangnung 2 10-702, So uth Korea
- Korea U niversity, Seoul, 136-701, Korea
- Myong Ji University, Yong in City 449-728, Ko rea
- System E lectronics Laboratory, Seoul National University, Seoul, South Korea
- Yonsei University, Seoul 120-749, Korea
- IHE P (Protvino), State Research Center of Russian Federation "Institute for High Energy Physics", Protvino 142281, Russia
- Joint Institute for Nu clear Research (JINR-Du bna), Du bna, Russia
- Kurchatov Institute, Moscow, Russia
- PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, R uss ia
- Skobeltsyn Institute of Nuclear Physics, Lom onosov Moscow State University, Vorob'evy Gory, Moscow 1 199 92, Russia
- Saint-Petersburg State Polytechnical Univiversity, Politechnicheskayastr, 29, St. Petersburg, 195251, Russia

- Abilene Christian University, Abilene, Texas, USA
- Brookhaven National Laboratory (BNL), Upton, NY 11973, USA
- University of California Riverside (UCR), Riverside, CA 92521, USA
- University of Colorado, Boulder, CO, USA
- Columbia University, Nevis Laboratories, Irvington, NY 10533, USA
- Florida Institute of Technology, Melbourne, FL 32901, USA
- Florida State University (FSU), Tallahassee, FL 32306, USA
- Georgia State University (GSU), Atlanta, GA, 30303, USA
- University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
- Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USA
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico State University, Las Cruces, New Mexico, USA
- Department of Chemistry, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- University of Tennessee (UT), Knoxville, TN 37996, USA
- Vanderbilt University, Nashville, TN 37235, USA

*as of March 2005

HXENIX

Map No. 3933 Rev. 2 UNITED NATIONS

10

The PHENIX Detector

- Philosophy
 - high resolution & high-rate at the cost of acceptance
 - trigger for rare events
- Central Arms
 - $|\eta| < 0.35$, $\Delta \phi \sim \pi$
 - γ , π^0 , e, π^{+} , ... Identified
 - Momentum, Energy
- Muon Arms
 - 1.2 < |η| < 2.4
 - Momentum (MuTr)

Accumulated data

Longitudinal polarization

Year	√s [GeV]	Recorded L	Pol [%]	FOM (P ⁴ L)
2003 (Run 3)	200	.35 pb ⁻¹	27	1.5 nb ⁻¹
2004 (Run 4)	200	.12 pb ⁻¹	40	3.3 nb ⁻¹
2005 (Run 5)	200	3.4 pb ⁻¹	49	200 nb ⁻¹
2006 (Run 6)	200	7.5 pb⁻¹	57	690 nb ⁻¹
2006 (Run 6)	62.4	.10 pb ⁻¹	48	5.3 nb ⁻¹

Transverse polarization

Year	√s [GeV]	Recorded L	Pol [%]	FOM (P ² L)
2001 (Run 2)	200	.15 pb⁻¹	15	3.4 nb ⁻¹
2005 (Run 5)	200	.16 pb ⁻¹	47	38 nb ⁻¹
2006 (Run 6)	200	2.7 pb ⁻¹	51	700 nb ⁻¹
2006 (Run 6)	62.4	.02 pb⁻¹	48	4.6 nb ⁻¹
2008 (Run 8)	200	5.2 pb ⁻¹	46	1100 nb ⁻¹

Result: $\pi^0 A_{LL}$

- Run6 scaling error based on online polarization values. Final scaling error expected to be ~10%
- Grey band is systematic uncertainty due to Relative Luminosity, and is pT independent.
- New paper will be submitted next week!

How to extract $\Delta g(x)$? (1)

- π⁰s come from quarks and gluons of various x
 → Deconvolution necessary
- Are we sure that we understand contribution of partons? YES!
 - NLO-pQCD calculation reproduces σ well

How to extract $\Delta g(x)$? (2)

- Practical analysis
 - Assume functional form: e.g., $\Delta g(x)=Cg(x)x^{\alpha}(1-x)^{\beta}$
 - Search optimum parameters using data, including DIS.
- Ex GRSV M. Gluck et al., PRD 63 (2001) 094005.
 - Assume ΔG , other parameters are determined from DIS.
 - Several versions for various ΔG GRSV-std, max, min, ...
- Several other analyses
 - For the same integral, ΔG , $\Delta g(x)$ could be very different
 - Our measurement mostly constrains $\Delta G_{[0.02,0.3]}$
- Details are available in our new paper (to be submitted next week)

ΔG from $\pi^0 A_{LL}$

16

More results

 \rightarrow sign of Δg

Also: direct γ , η , jet, J/ ψ , e, μ , ... no time to show them all

Transverse spin physics

- Transversity $\delta q :$ Due to Einstein's relativity, not the same as Δq
 - Unexplored leading twist PDF
 - Seen as A_N (via Collins effect) and A_{TT}
- A_N left-right asymmetry wrt transverse polarization

Forward pions

Naive pQCD predicts A_N ~ m_q/sqrt(s) ~ 0

Very hot recently

Possible mechanisms (ex.)

Sivers mechanism:

correlation between proton spin & parton k_T

Collins mechanism:

Transversity (quark polarization) ×jet fragmentation asymmetry

Nucl Phys B396 (1993) 161

20

gluon effect? yes

no gluon effect

Midrapidity hadron A_N

- A_N is zero within 1% \rightarrow contrast with forward pions
- Constrains Sivers distribution function for gluons (Anselmino et al., PRD74, 094011 (2006))
- Updated π^0 analysis with >10x smaller stat. error underway.

Collins fragmentation function H_1^{\perp}

J. C. Collins, Nucl. Phys. B396, (1993) 161

FF measurements are ongoing at KEK-BELLE

Asymmetry result

More results ... again, no time to show them all

Looking forward – More data!

- More data
 - More than 65 pb⁻¹ with 70% polarization at 200 GeV
 - 500 GeV data taking starts from 2009 \rightarrow small x region
 - More channels
- More detectors
 - Central arm: VTX
 - Forward region: MPC, NCC, FVTX, Muon trigger
- More physics
 - W flavor decomposition of quark polarization
 - A_N a quest for mechanism
 Analysis of data from Run6 & 8 are underway

Summary

- Gluon polarization
 - Current π^0 data suggests $\Delta g(x)$ is small for 0.02<x<0.3
 - Extension toward lower x is important
 - \rightarrow detector upgrades, higher energy
 - sign problem \rightarrow forward upgrades, direct photon
- Transverse spin physics
 - Trying to find the mechanism to produce large ${\rm A}_{\rm N}$ in forward region
 - Access transversity
- More data are still to come