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Motivation

We present results of the coupled-channel analysis of data

on processes ππ → ππ, KK, ηη, ηη′ in the the channel

with IGJP C = 0+0++ and on the Kπ scattering in the

channel with I(JP ) = 1
2
(0+). Generally, scalar mesons are

very intriguing objects constituting the Higgs sector of

strong interactions and being the most direct bearers of

information on the QCD vacuum structure.

An exceptional interest to this sector is supported by the

fact that there, possibly indeed, we deal with a glueball

f0(1500) (see, e.g., C.Amsler, F.E.Close, PR D 53, 295 (1996);

C. Amsler et al. (PDG), PL B 667 (2008) 1.).

However, as to parameters of the scalar mesons and even

the status of some of them, there is a considerable

disagreement (C. Amsler et al. (PDG), PL B 667 (2008) 1.).



Especially this concerns the f0(600)/σ-meson and

K∗
0(900)/κ(800). In view of these circumstances, there are

the known problems as to determining a QCD nature of

the observed mesonic states and their assignment to the

quark-model configurations in spite of a big amount of

work devoted these problems (see, e.g., V.V.Anisovich, IJMP

A 21, 3615 (2006) and references therein).

Here we have applied to analyses of experimental data

a model-independent method based only on the first

principles (analyticity and unitarity) (D.Krupa,

V.Meshcheryakov, Yu.Surovtsev, NC A 109, 281 (1996) – KMS, 96).

That approach permits us to omit theoretical prejudice in

extracting the resonance parameters. Considering the

obtained disposition of resonance poles on the Riemann

surface, obtained coupling constants with channels and

resonance masses, we draw definite conclusions about

nature of the investigated states.



The coupled-channel formalism in
model-independent approach

Our model-independent method which essentially utilizes

an uniformizing variable can be used only for the 2-channel

case and under some conditions for the 3-channel one.

Only in these cases we obtain a simple symmetric (easily

interpreted) picture of the resonance poles and zeros of

the S-matrix on the uniformization plane.

The S-matrix is determined on the 4- and 8-sheeted

Riemann surfaces for the 2- and 3-channel cases,

respectively. The matrix elements Sαβ, where

α, β = 1, 2, 3 denote channels, have the right-hand cuts

along the real axis of the s complex plane (s is the

invariant total energy squared), starting with the channel

thresholds si (i = 1, 2, 3), and the left-hand cuts.



The Riemann-surface sheets are numbered according to

the signs of analytic continuations of the channel momenta

ki =
√

s − si/2 (i = 1, 2, 3) as follows:

I II III IV V VI VII VIII

Imk1 + − − + + − − +

Imk2 + + − − − − + +

Imk3 + + + + − − − −
The resonance representations on the Riemann surfaces

are obtained with the help of formulas from (KMS, 96),

expressing analytic continuations of the S-matrix elements

to unphysical sheets in terms of those on sheet I that have

only the resonances zeros (beyond the real axis), at least,

around the physical region.

In the 2-channel case, we obtain 3 types of resonances

described by a pair of conjugate zeros on sheet I only in

S11 – the type (a), only in S22 – (b), and in each of S11

and S22 – (c).



In the 3-channel case, we obtain 7 types of resonances

corresponding to 7 possible situations when there are

resonance zeros on sheet I only in S11 – (a); S22 – (b);

S33 – (c); S11 and S22 – (d); S22 and S33 – (e); S11

and S33 – (f); S11, S22, and S33 – (g).

The resonance of every type is represented by the pair of

complex-conjugate clusters (of poles and zeros on the

Riemann surface). The cluster kind is related to the

nature of state. For example, if we consider the ππ, KK

and ηη channels, then a resonance, coupled relatively more

strongly to the ππ channel than to the KK and ηη ones is

described by the cluster of type (a). In the opposite case,

it is represented by the cluster of type (e) (say, the state

with the dominant ss̄ component). The flavour singlet

(e.g., glueball) must be represented by the cluster of type

(g) (of type (c) in the 2-channel consideration) as a

necessary condition for the ideal case, if this state lies

above the thresholds of considered channels.



Note that whereas cases (a), (b) and (c) can be simply

related to the representation of resonances by

Breit-Wigner forms, cases (d), (e), (f) and (g) practically

are lost at the Breit-Wigner description.

We can distinguish, in a model-independent way, a bound

state of colourless particles (e.g., KK molecule) and a qq̄

bound state. Just as in the 1-channel case, the existence

of the particle bound-state means the presence of a pole

on the real axis under the threshold on the physical sheet,

so in the 2-channel case, the existence of the bound-state

in channel 2 (KK molecule) that, however, can decay into

channel 1 (ππ decay), would imply the presence of the

pair of complex conjugate poles on sheet II under the

second-channel threshold without the corresponding

shifted pair of poles on sheet III.



In the 3-channel case, the bound-state in channel 3 (ηη)

that, however, can decay into channels 1 (ππ decay) and 2

(KK decay), is represented by the pair of complex

conjugate poles on sheet II and by the pair of shifted poles

on sheet III under the ηη threshold without the

corresponding poles on sheets VI and VII. This test

(D. Morgan, M.R. Pennington, PR D 48, 1185 (1993); KMS, 96)

is the multichannel analogue of the known

Castillejo–Dalitz–Dyson poles in the one-channel case.

According to this test, earlier in (KMS, 96), we rejected

interpretation of the f0(980) as the KK molecule because

this state is represented by the cluster of type (a) in the

2-channel analysis of processes ππ → ππ, KK and,

therefore, does not satisfy the necessary condition to be

the KK molecule.



We use the Le Couteur-Newton relations (K.J.LeCouteur,

Proc.Roy.Soc. A 256, 115 (1960); R.G.Newton, J.Math.Phys. 2, 188

(1961); M.Kato, Ann.Phys. 31, 130 (1965)). They express the

S-matrix elements of all coupled processes in terms of the

Jost matrix determinant d(k1, · · · , kn) that is a real

analytic function with the only square-root branch-points

at ki = 0.

The important branch points, corresponding to the

thresholds of the coupled channels and to the crossing

ones, are taken into account in the proper uniformizing

variable.

On the uniformization plane, the pole-cluster

representation of the resonance is the good one.



Analysis of the isoscalar-scalar sector

Considering the S-waves of processes

ππ → ππ, KK, ηη, ηη′

in the model-independent approach, we have performed

2 variants of the 3-channel analysis.

Variant I: The combined analysis of ππ → ππ, KK, ηη.

Variant II: Analysis of ππ → ππ, KK, ηη′.

Influence of the ηη′-channel in the I case and of the ηη

in the II one are taken into account in the background.

In the new uniformizing variable used, we neglect the

ππ-threshold branch point (however, unitarity on the

ππ-cut is considered) and take into account the threshold

branch-points related to two remaining channels and the

left-hand branch-point at s = 0 concerned the crossed

channels.



It is

w = 2
mηk2 + mKk3
√

s(m2
η − m2

K)
for variant I,

and

w′ =
(mη + mη′)k′

2 + 2mKk′
3

√

s[1
4
(mη + mη′)2 − m2

K ]
for variant II.

All, related to variant II, are primed.

On the w-plane, the Le Couteur-Newton relations are

S11 =
d∗(−w∗)

d(w)
, S22 =

d(−w−1)

d(w)
, S33 =

d(w−1)

d(w)
,

S11S22−S2
12 =

d∗(w∗−1)

d(w)
, S11S33−S2

13 =
d∗(−w∗−1)

d(w)
.



d = dBdres, dres(w) = w− M
2

M
∏

r=1

(w + w∗
r)

M is the number of resonance zeros.

dB = exp[−i(a +

3
∑

n=1

kn

mn

(αn + iβn))],

αn = an1 + anσ

s − sσ

sσ

θ(s − sσ) + anv

s − sv

sv

θ(s − sv),

βn = bn1 + bnσ

s − sσ

sσ

θ(s − sσ) + bnv

s − sv

sv

θ(s − sv).

sσ – the σσ threshold; sv – the combined threshold of

many opening channels in the range of ∼ 1.5 GeV

(ηη′, ρρ, ωω).

In variant II (the uniformizing variable w′),

a′
nη

s − 4m2
η

4m2
η

θ(s − 4m2
η) and b′

nη

s − 4m2
η

4m2
η

θ(s − 4m2
η)

should be added to α′
n and β′

n, respectively.



For the ππ scattering, the data from the threshold to 1.89

GeV are taken from (B.Hyams et al., NP B 64, 134 (1973); ibid.

100, 205 (1975); A.Zylbersztejn et al., PL B 38, 457 (1972);

P.Sonderegger, P.Bonamy, in Proc. 5th Intern. Conf. on Elem. Part.,

Lund, 1969, paper 372; J.R.Bensinger et al., PL B 36, 134 (1971);

J.P.Baton et al., PL B 33, 525, 528 (1970); P.Baillon et al., PL B 38,

555 (1972); L.Rosselet et al., PR D 15, 574 (1977); A.A.Kartamyshev et

al., Pis’ma v ZhETF 25, 68 (1977); A.A. Bel’kov et al., Pis’ma v

ZhETF 29, 652 (1979)). For ππ → KK, practically all the

accessible data are used (W.Wetzel et al., NP B 115, 208 (1976);

V.A.Polychronakos et al., PR D 19, 1317 (1979); P.Estabrooks, PR D

19, 2678 (1979); D.Cohen et al., PR D 22, 2595 (1980); G.Costa et al.,

NP B 175, 402 (1980); A.Etkin et al., PR D 25, 1786 (1982)).

For ππ → ηη, we used data for |S13|2 from the threshold

to 1.72 GeV (F.Binon et al., NC A 78, 313 (1983)).

For ππ → ηη′, the data for |S13|2 from the threshold to

1.813 GeV are taken from (F. Binon et al., NC A 80, 363

(1984)).



We considered the case with all five resonances discussed

below 1.9 GeV. In variant I, the f0(600) is described by

the cluster of type (a); f0(1370), type (c); f0(1500), type

(g); f0(1710), type (b); the f0(980) is represented only by

the pole on sheet II and shifted pole on sheet III in both

variants.

Satisfactory description: for the ππ-scattering from about

0.4 to 1.89 GeV (χ2/NDF = 155.319/(165 − 34) ≈ 1.19);

for ππ → KK, from the threshold to about 1.6 GeV

(χ2/NDF = 147.169/(120 − 33) ≈ 1.69);

for ππ → ηη, from the threshold to 1.72 GeV

(χ2/N.exp.points ≈ 0.86).

The total χ2/NDF is 314.452/(301 − 41) ≈ 1.21.

The background parameters are: a = 0.1199, a11 = 0.2813,

a1σ = −0.008, a1v = 0, b11 = 0, b1σ = 0, b1v = 0.0462,

a21 = −1.3267, a2σ = −0.5829, a2v = −7.544,

b21 = 0.0344, b2σ = 0, b2v = 6.862, b31 = 0.6386,

b3σ = 0.4384, b2v = 0; sσ = 1.638 GeV2, sv = 2.085 GeV2.



The combined description of processes ππ → ππ, KK, ηη′

(variant II) is even better due to the more detailed

representation of the background:

the f0(600) is described by the cluster of type (a′);

f0(1370), type (b′); f0(1500), type (d′); f0(1710), type (c′).

For the

ππ-scattering, χ2/NDF = 129.854/(165 − 31) ≈ 0.97.

for ππ → KK, χ2/NDF = 150.904/(120 − 31) ≈ 1.68;

for ππ → ηη′, χ2/N.exp.points ≈ 0.3.

The total χ2/NDF for these three processes is

283.151/(293 − 38) ≈ 1.11!

The background parameters are:

a′ = 0.2315, a′
11 = 0, a′

1η = −0.0616, a′
1σ = 0.0298,

a′
1v = 0.0622, b′

11 = b′
1η = b′

1σ = 0, b′
1v = 0.0449,

a′
21 = −3.1359, a′

2η = 0, a′
2σ = 0.4866, a′

2v = −4.532,

b′
21 = 0, b′

2η = −0.7478, b′
2σ = 2.5545, b′

2v = 1.948,

b′
31 = 0.4489, sσ = 1.638 GeV2, sv = 2.126 GeV2.
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Figure 1: The phase shift and module of the ππ-scattering

S-wave matrix element. The solid curve – variant I; the

dashed curve – variant II.
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S-wave matrix element. The solid curve – variant I; the

dashed curve – variant II.
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Figure 3: The squared modules of the ππ → ηη (upper fig-

ure) and ππ → ηη′ (lower figure ) S-wave matrix elements.



Let us indicate the obtained pole clusters for resonances

on the complex energy plane
√

s. In variant I, poles on

sheets IV, VI, VIII and V, corresponding to the f0(1500),

are of the 2nd and 3rd order, respectively (this is an

approximation). In variant II, poles on sheets IV and V,

corresponding to the f0(1500), are of the 2nd order.√
sr =Er−iΓr.

Table 1: Pole clusters for the f0-resonances in variant I.

Sheet II III IV V VI VII VIII

f0(600) Er 550.05±13 624±14 628.9±16 555.4±15

Γr 559±17 559±19 559±18 559±20

f0(980) Er 1011.9±4 978.2±9

Γr 36.4±6 56.3±10

f0(1370) Er 1396.1±16 1396.1±18 1396.1±18 1396.1±13

Γr 287.1±17 270.5±15 155.7±9 172.3±7

f0(1500) Er 1501.2±11 1495.8±13 1501.2±12 1497.7±12.5 1510.4±16 1502±12 1501.2±10

Γr 357.4±15 140.7±12 238±13 140.5±14 186.9±17 90.9±11 356.4±14

f0(1710) Er 1718±12 1718±10 1718±13 1718±15

Γr 149.5±9 166.3±8 321.9±14 305.1±13



Table 2: Pole clusters for the f0-resonances in variant II.

Sheet II III IV V VI VII VIII

f0(600) Er 558.7±8 564.3±10 541.3±12 535.7±12.5

Γr 529±11 529±12 529±14 529±13

f0(980) Er 1009±3 986±6

Γr 31.8±4 57.4±5.5

f0(1370) Er 1411.6±9 1411.6±11 1428.4±13 1428.4±14

Γr 215.6±10 235±12 235±12 215.6±19

f0(1500) Er 1496.9±12 1503±10 1496.9±13 1496.9±14 1494.6±12 1496.9±15

Γr 198.5±15 236±10 193.1±9 198.5±11 193.7±8.5 193.1±10

f0(1710) Er 1743±12 1743±13 1743±12 1743±10

Γr 144.1±9 111.5±8 82.1±8 114.7±7

Note a surprising result obtained for the f0(980). It turns

out that this state lies slightly above the KK threshold

and is described by the pole on sheet II and by the shifted

pole on sheet III under the ηη threshold without the

corresponding poles on sheets VI and VII, as it was

expected for standard clusters. This corresponds to the

description of the ηη bound state.



For subsequent conclusions, let us mention the results for
coupling constants from our previous 2-channel analysis of
processes ππ → ππ, KK (Yu.S.Surovtsev, D.Krupa, M.Nagy, EPJ
A 15, 409 (2002)): g1 is the coupling constant with ππ; g2,
with KK.

f0(600) f0(980) f0(1370) f0(1500)

g1, GeV 0.652 ± 0.065 0.167 ± 0.05 0.116 ± 0.03 0.657 ± 0.113

g2, GeV 0.724 ± 0.1 0.445 ± 0.031 0.99 ± 0.05 0.666 ± 0.15

The f0(980) and the f0(1370) are coupled essentially more

strongly to the KK system than to the ππ one, i.e., they

have a dominant ss̄ component. The f0(1500) has the

approximately equal coupling constants with the ππ and

KK, which apparently could point to its dominant

glueball component. In the 2-channel case, f0(1710) is

represented by the cluster corresponding to a state with

the dominant ss̄ component.



Our 3-channel conclusions on the basis of resonance

cluster types generally confirm the ones drawn in the

2-channel analysis (besides the above surprising conclusion

about the f0(980) nature).

Masses and widths of states should be calculated from the

pole positions.

T res =
√

sΓel/(m2
res − s − i

√
sΓtot)

Table 3: Masses and total widths of the f0-resonances (in MeV).

Variant I Variant II

State mres Γtot mres Γtot

f0(600) 784.6 1118 769.4 1058

f0(980) 1012.6 72.8 1009.5 63.6

f0(1370) 1406.7 344.6 1431 470

f0(1500) 1542.9 712.8 1510 397

f0(1710) 1724.5 299 1746.8 229.4



Analysis of the Kπ scattering in the
I(JP) = 1

2
(0+) channel

When analyzing data (D. Aston et al., NP B 296, 493 (1988)) for

the module of the K−π+-scattering amplitude

T = (S − 1)/2i and its phase shift δ in the I(JP ) = 1
2
(0+)

channel, we applied the model-independent method taking

into account in the uniformizing variable the branch-points

related to the thresholds of the Kπ and Kη channels

assuming that the influence of remaining channels and the

left-hand cuts can be accounted via the background. The

corresponding uniformizing variable has the form:

v =

√
s − s0 +

√
s − s1√

s1 − s0

where s0 and s1 are the thresholds of the K−π+ and K0η

channels, respectively.



The 2-channel S-matrix element of Kπ-scattering is taken

in the form

S = Srese
2iδbg

where the resonance part

Sres =
d(−v−1)

d(v)

has no cuts on the v-plane. The d(v)-function is

d(v) = v−M

M
∏

n=1

(1 − v∗
nv)(1 + vnv),

where M is the number of pairs of the conjugate zeros

corresponding to resonances.

The phase

δbg =

√

s − s0

s
(a + ib)

describes the background: a relates to its elastic part, b to

the inelastic one.



Since the question stands about the status of the K∗
0(900),

first we carried out the analysis considering only one

resonance K∗
0(1450) of type (a). It is possible to obtain a

satisfactory description with the total

χ2/NDF = 125.85/(74 − 6) ≈ 1.85. Omitting three

experimental points at 826.67, 1560.01 and 1591.12 MeV

for the module of amplitude and the points at 867.86,

1016 and 1384.11 MeV for the phase shift δ which give the

anomalously-large contribution to the χ2, we obtained the

total χ2/NDF = 92.09/(68 − 6) ≈ 1.48.

The calculated mass and total width were 1428 and 282

MeV, respectively, and the background parameters

a = 0.6951 and b = −0.0614. A negative sign of the

quantity b means the increasing inelastic part of the

background.

It is important: The increasing inelastic background part implies

a necessity to consider explicitly some physical phenomenon.



In the previous analysis of scalar sector, the analogous

situation in variant II implied necessity of the explicit

consideration of the ηη-threshold branch-point.

In the given case, the increasing inelastic background part

implies necessity to consider explicitly one more resonance

of the expected type (b). Indeed, it turned out that for

the reasonable description two resonances, K∗
0(900) of

type (b) and K∗
0(1450) of type (a), should be considered.

The total χ2/NDF is 128.296/(74 − 9) ≈ 1.97. Omitting

three points at 826.67, 1560.01 and 1591.12 MeV for the

module of amplitude and the points at 827.45, 1384.11 and

1505.32 MeV for the phase shift which give the

anomalously-large contribution to the χ2, we obtain the

total χ2/NDF = 75.707/(68 − 9) ≈ 1.28, i.e., the

description is better, and, furthermore and this is

principal, the background parameter b equals zero in this case.



In Table, the pole-clusters of the obtained resonances are

shown on the lower
√

s-half-plane (in MeV) of the

4-sheeted Riemann surface (the poles on the upper

half-plane are not shown).

II III IV

K∗
0(900) 859.9 − i221.6 885.6 − i280.8

K∗
0(1450) 1441.7 − i172.3 1430 − i144

These pole-clusters mean that the K∗
0(1450) is coupled

mainly with the Kπ channel, whereas the K∗
0(900) is

coupled weaker with this channel than with other ones

such as the Kη and Kη′ channels.



Masses and total widths can be calculated from the pole

positions on sheet II for resonance of type (a) and on

sheet IV for resonance of type (b).

T res =

√
s Γel

m2
res − s − i

√
s Γtot

,

mres [MeV] Γtot [MeV]

K∗
0(900) 929 561.6

K∗
0(1450) 1452 344.6

The background phase shift

δbg =
√

(s − s0)/s a

turned out to be elastic with the only parameter

a = 0.6503. This means that the influence of other

channels such as Kπππ and Kπσ is negligible, except for

the K0η′ channel, at opening of which there is a small

deviation of our curve for the module of amplitude from

the data.
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Figure 4: The phase shift and module of amplitude of the

Kπ scattering in the I(JP ) = 1
2
(0+) channel.



Discussion and conclusions

• In the combined model-independent analysis of data

on the ππ → ππ, KK, ηη, ηη′ processes in the

IGJP C = 0+0++ channel, an additional confirmation of

the σ-meson with mass 785 MeV is obtained. This

value remarkably accords with prediction (mσ ≈ mρ)

on the basis of mended symmetry by S. Weinberg

(PRL 65, 1177 (1990)).

• Indication for f0(980) to be the ηη bound state is

obtained. From the point of view of quark structure,

this is the 4-quark state. Maybe, this is consistent

somehow with arguments in favour of the 4-quark

nature of f0(980) (N.N.Achasov, NP A 675, 279c (2000);

M.N.Achasov et al., PL B 438, 441 (1998); ibid. 440, 442 (1998)).



• The f0(1370) and f0(1710) have the dominant ss̄

component. Conclusion about the f0(1370) quite well

agrees with the one of work of Crystal Barrel

Collaboration (C.Amsler et al., PL B 355, 425 (1995)) where

the f0(1370) is identified as ηη resonance in the π0ηη

final state of the p̄p annihilation at rest. Conclusion

about the f0(1710) is quite consistent with the

experimental facts that this state is observed in

γγ → KSKS (S.Braccini, Proc. Workshop on Hadron

Spectroscopy, Frascati Phys. Series XV, 53 (1999)) and not

observed in γγ → π+π− (R.Barate et al., PL B 472, 189

(2000)).

• As to the f0(1500), we suppose that it is practically

the eighth component of octet mixed with a glueball

being dominant in this state. Its biggest width among

enclosing states tells also in behalf of its glueball

nature (V.V.Anisovich et al., NP Proc.Suppl. A56, 270 (1997)).



• In the model-independent analysis of the Kπ

scattering data (D. Aston et al., NP B 296, 493 (1988)) in

the I(JP ) = 1
2
(0+) channel, an evidence for existence

of the K∗
0(900) with the mass 929 MeV and total

width 564 MeV is obtained. This state should be

coupled weaker with the Kπ channel than with the Kη

and/or Kη′ ones. Our mass value differs from the

average one (672±40 MeV) cited in the PDG tables of

2008, whereas the width practically coincides. Our

values of the mass and width correspond most near to

the ones (909+65
−30 and 545+235

−110 MeV, respectivly) from

work (S.Ishida et al., PTP 98, 621 (1997)), obtained in the

analysis of the Kπ scattering using an interfering

Breit-Wigner amplitudes. However, unlike the

indicated work, we did not need the repulsive background,

not very clear in the Kπ scattering.



• The second K∗
0 resonance in the Kπ scattering has the

mass 1452 MeV and total width 346 MeV in some

accordance with the values cited in the PDG tables.

• We propose a following assignment of scalar mesons

below 1.9 GeV to lower nonets, when excluding the

f0(980) as the ηη bound state. The lowest nonet: the

isovector a0(980), the isodoublet K∗
0(900), and f0(600)

and f0(1370) as mixtures of the 8th component of

octet and the SU(3) singlet. The Gell-Mann–Okubo

(GM-O) formula

3m2
f8

= 4m2
K∗

0
− m2

a0

gives mf8
= 910 MeV.

In relation for masses of nonet

mσ + mf0(1370) = 2mK∗
0

the left-hand side is by about 18 % bigger than the

right-hand one.



• For the next nonet we find: a0(1450), K∗
0(1450), and

f0(1500) and f0(1710), the f0(1500) being mixed with

a glueball which is dominant in this state. From the

GM-O formula, mf8
≈ 1453 MeV. In formula

mf0(1500) + mf0(1710) = 2mK∗
0 (1450)

the left-hand side is by about 12.5 % bigger than the

right-hand one.

This assignment moves a number of questions, stood

earlier, and does not put the new ones. The mass

formulas indicate to non-simple mixing scheme. The

breaking of 2nd relations tells us that the σ−f0(1370)

and f0(1500)−f0(1710) systems get additional

contributions absent in the K∗
0(900) and K∗

0(1450),

respectively. A search of the adequate mixing scheme

is complicated by the circumstance that here there is

also a remainder chiral symmetry, though, on the

other hand, this permits one to predict correctly, e.g.,

the σ-meson mass.


