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1. Motivation
When we pass from hadron-light nucleus, light nucleus-light nucleus collisions at
low, middle and high energies to relativistic and ultrarelativistic heavy ion collisions
we get the new and unequal possibility: to create the high density and high
temperature—hadronic matterand—togetthe informationonthepropertiesof the
matter under extreme conditions. In such new situation the volume of information
increases sharply as well as the background information. The Figure illustrates how
the volume of the information increase with energy and the mass of beams. Some

time the background information
can grow faster than useful signal information due to the

reason that the number of secondary multiparticle
interactions become more and more it is very essential in
case of central collisions.
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It is expected that in central collisions, at energies that are and will be soon
available at SPS (CERN), RHIC (BNL) and LHC (CERN) the new phases of strongly
m‘rerachng matter as well as Quark Gluon Plasma [S. Jeon and V. Koch Review for Quark-Gluon

‘rhese colhs:ons a number' of produced par"rucles can be ar'ound of 105 (Ias’r picture in
Fig.1) and a natural question arises how could a useful signal separate ? The most popular
fraditional methods of analysing data coming from high-energy nucleus-nucleus collisions
are: i) the

E. A. De Wolf ,.I-. M. Dremin, and W. Kittel, Usp. Fiz.

Nauk 163, 3 (1093) [Phys. Usp. 36, 225 (1993)] i) the analysis of

correlation analysis [

E. Byckling and K. Kajantie, Particle Kinematics (Wiley,

missing masses New York, 1973). ] and effective mass spectra

V. L LledEl.,llCl\']}', Yu. P. Nikitn, and 1. L. Rogzen-
[ tal', Kinematic mefhoa's.sn high energy physics [ Nauka, ]' lll) -I-he |n-|-er.fer.ence meThOd of lden-‘-lca|

Moscow. 1987 {in Russian).

par'TiCIQS [ ?}Q;Q?mdgoretsky. Fiz. Elem. Chastits At.Yadra, 20, 628 ] etc. These ones are Ver'y sensitive

——tg=background information.

Therefore it is necessary to look for and apply new methods, new approach to data
analyses at relativistic and ultrarelativistic heavy ion collisions which would be not so
sensitive to background information.



2. Random Matrix Theory for data process at low energy.

The Ref. [M. L. Mehta, Random Matrices, Second ed.(Academic, New York, 1991).] introduced
method on basic of Random Matrix Theory to explain the statistical

fluctuations of neutron reso es in compound lei [C_E. Ponter=Statistical
T Theories of Spectra: Fluctuations (Academic, New York, 1965).] (see also Ref.[ T. A. Brody, J. Flores,

J. B. French, P. A. Mello, A.Pandy, and S. S. M. Wong, Rev. Mod. Phys.53, 385 (1981).]) which dose
) not depend on the background of measurements. Let us consider the main
points of this method.

e
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o
To analysis the energetic levels of compound nuclei the p(S)func‘rion is

I defined. This is the function of distances between two energetic levels. It can

be defined using the general distributions for probability of all kinds of
y ensembles [ T. Ghur, A. Muller-Groeling, and H. A. Weidenmuller, Phys. Rep. 299, 189 1998, ]

P(Ev -+ Ex) ~ 1 (En ~ En)eap (- AT E)

n>=m

Here v isindex of universality which can get the values 1,2 or 4 for different
statistics. If v=0 so we will get the Poisson type distributions.



In case of two dimension matrix using the formula for probability one can

get

h p(s) = /_1 dE, /_’: dE,P(E,, E;)0(s — |E, — B,|) =
e = (. /_i dEy f_i dEs|Ey — Es|” exp (—425;2) x (s — |Ey — Ej|.
o here s = |E,,, — E,|/D the distance between two neighbor levels , D

average distance between the levels. The values of the parameters A
¥  and Ccan be obtained from conditions:
y j] pls)ds =1,

Lx sp(s)ds = 1.

The first one is a condition of normalized total for probability and second one
does a condition of normalized average between levels distances.



At v=1the integral for p(s)gives Wigner type behavior

_ T2 §
. s-e 1% s> 0

F,(s) =

wl =

T It means the repulsive force appeared between the levels. Therefore if we have
got the energetic levels iv normal conditions so their p(s) distribution will have
Passion type behavior and if the levels were excited so we will get Wignher type
distribution.

e

Eh’rnr'am Shahaliev has prepared the package of program to define the p(s)
O functions for all kind of reactions (shah@sunhe. jinr.ru).
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Lot us consider the diserete spectrum {Ey} i = 1, N of a d-dimensional quantum

systern (d is a number of degrees of freedom). A separation of fluctuations of a quantum

spectrum can be based on the analyeis of the density of states below some threshold E

N
S(E) = S 6(E - Ey). (1)
i=1
We can define a staircase function
E N
N(E) :Jr S(EYdE =Y 8(E — E), (2)
T ’_1

giving the number of points on the energy axis which are balow or equal to E. Here

0 or o 0
) = 4 (3)
1 for x> 1
We separate N{E) in a smooth part {{E) and the reminder that will define the fluctuating
part Nal £
NIEY = E)y 4+ NalE) (4]
The smooth part () can be determined either from semiclassical arguments or using a
polynomial or spline interpolation for the staircase function.
To study fluctunations we have to get rid of the smooth part. The usnal procedure is to
"unfold" the criginal spectrum { By} through the mapping £ — =

x, = OB, i=1..N (5
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Now we can define spacings s, — »; 1y — x; between two adjacent points and eollect them in
a histogram. The effect of mapping is that the sequence {x;} has on the average a constant
mean spacing {or a constant density ), irrespective of the particular form of the funetion £ £

. To characterize fluctuations one deals with different correlation functions . In this
paper we will use only a correlation funetion related to spacing distribution between adjacent

levels. Below, we follow a simple heuristic argument due to Wigner that illustrates the
presence of absenee of lewvel repulsion in an energy spectrum.

For a random sequence, the probakbility that the level will be in the small interval [zq +
s, g+ 8 + ds| is independent of whether or not there is a level at x;. Given a level at ay,
let the probability that the next level be in [xq + 5, 20 + 5 + ds] be pis)ds. Then for p(s),
the nearest-neighbor spacing distribution, we have

pislds =p(l c ds|0 € s)p 0 £ 5) (&)

Here, pin = 8) is a probability that the interval of length & contains n levels and pin =
dslm < s) is the conditional probability that the interval of length ds contains n levels,
when that of length s contains m levels. Une has pi0 £ s) = |7 @ s"1ds’, the probahbility
that the spacing is larger than s. The term p(l < ds|0 £ 5) = pis)ds [pis) is the density of
spacings 5|, depends explicitly on the choices, 1 and 0, of the discrete variables n.m. As a

result, one obtains p(s) = pis) 7 p(s")ds" which can be solved to give

=
pis) =,L-LI:S]E':{P[—J|; i 8" yds") (7]
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The function pis) and its first moment are normalized to unity,
# =
f ws)ds = 1, f sp(s)ds = 1. ()
Jo 0
For a linear repulsion (s} = 75/2 cne obtains the Wigner surmise,
P ) T a, ;
i8] _E.se:t:p(—zs I, =10 (9]
For a eonstant value pifs) = 1 one obtains the Poisson distribution

pig) = exp™?, g >0 (10]

Agr discussed above, when quantum numbers of levels are well defined, cne should expect
for the spacings the Poisson type distribution, while a Wigner type distribution oceurs due

to either internal or external perturbations that destroy these quantum numbers.



3. The applying of RMT for high energy physics.
It is idea of E. Shahaliev to apply method of RMT to data process for
hucleus - nucleus collisions at relativistic and ultrarelativistic energies. The
secondary particles produced at low energies and defined the p(s) functions.

In this step we 1ry only to get some signal of appearing the Wigner-type

m303 =0T XM

distribution in the experiment.

To test the utility and the validity of the proposal we use the experimental data that have
been obtained from the Z-m propane bubble chamber of LHE, JINR . The chamber,
placed in a magnetic field of 1.5 T, was exposed to beams of light relativistic nuelei at the
Dubna Synchrophasctron.  Practically all secondaries, emitted at a 47 total solid angle,
wore detoected in the chamber. All negative particles, excopt those identified as electrons,
were considered as 7 —-mesons. The contaminations by misidentified electrons and negative
strange particles do not exceed 5% and 19, respectively. The average minimum momentum
for pion registration is about 70 MeV /e, The protons were selected by a statistical method
applied to all positive particles with a momentum of [p| = 500 MeW /e (we identified slow
protons with |p| < 700 MeV /e by ionization in the chamber). In this experiment, we had

got 20407 ¥OC interactions at a momentum of 4.24 GeV/e

We considered the events with more than 10 particles as well as the method is
statistical one.

Our analyses has been done for different range of values of the momentum for
pecondary particles.



3.1 First signal.

Un Fig. 1 the dependence dN/d|p| as a funetion of the measured momentum (0.15-7.5

eV je) of the secondary particles is displayed . The numerical data N{p) were approximated

mx 0T XM

~ by the polynomial function of the sixth crder and we obtain the distribution of varions

#3093

spacings s in 2636 events satisfying the condition of v per degree of freedom less than
1.00.  In the Figs the data were presented for: the [i ]15-1.14 G,_:.‘-r-'ll.".a:. (region I, Fig. 2a) particles;
(region 11,
Fig. 2b) covers the values 1.14-4.0 GeV /e, ;the region 4.0-7.5 GeV /e
di/dp p{u} P
Q1EEA<1. 14 1.14<F< 4,0
(Dol o} {Gavyc]

[ ] - 1 . L} E r ol L] “all

iiiiipum :

Fig.1 Fig.2 a Fig.2 b

(Fig. 2e). The spacing probability nicely reproduces this tendency depending on the

region of the momentum distribution. The funetion pis) has the Poisson distribution for the
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To test the scale
dependences of the
results we changed of
the scale of momentum in

1T, IT and.III regions.

The results did not
change qualitatively. We
used as a main parameter
to create the p(s)
distribution total energy
of secondary particles
instead the momentum
too. The pictures did not
change qualitatively.

and the region

II corresponds to the intermediate gituation, when the spacing distribution lies betwean the

Foisson and the Wigner distributions. In third region we have got & Wigner

type distribution for the spacing probability
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4. Comparison
Above we have noted that amongst the most popular traditional methods

of analysing data produced at high-energy nucleus-nucleus collisions are: i)
the correlation analysis , ii) the analysis of missing masses and effective

results based on such methods are very sensitive o background information.
On the other hand all new methods cannot give the results which would be
against these methods. So we tried tfo compare the results coming from

=== These methods and from one on Random Matrix Theory.

m
T

4.1 The two particle correlation analysis.

The wvalidity of the HMT analysis 158 confirmed by an
immdependent analysis of the data with the aid of the stan-
dard pair-correlation function |

d? o / dyy dyo
Ry, 2a) = o- : dua) &
L3, B2 I:_dl':?'.,-'l.'iyl :II:dl"_T".dyE.:l

Here, the guantity « 1s the cross section of the inclusive
reaction and y = %EH%H 1= the rapidity, which depends
on the particle energy E and its longitudinal momentum
£ . The rapidity 1= one of the main characteristics widely
n=ed 1n relativistic nuclear phy=ics . In partic-
ular, the change of the reference frame leads to a trivial
shift Ay in the rapidity.



"= The pair-correlation function manifests the difference
€ hetween the probability density of two-particle events
B and the product of the probability densities of inde-
« pendent particle events. It vanishes if the particle ra-
o pidities are independent. Figure demonstrates the re-
= sults for particles obtained in **CC-interactions. For the
sake of illustration, we integrate the tunction Rz, yo)
over one of the variables, say yy, and consider the de-
pendence on #y. For different momentum distributions,
there are three intervals of integration for the wvariable
b y1: a)for 0.1 < |p| < 1.14 GeV /e the function Rz, y2)
15 Integrated in the interval —09 < wi < 2.5: bifor
1.14 < |p| < 4.0GeV/c 1t 1= integrated in the interval
0.5 < gp < 24; and c)for 4.0 < |p| < 7.5 GeV/je it is
integrated in the nterval 2.5 < y; < 3.5, The results
tor the function R = fm Riyq,y2)dy; clearly indicate the
presence of correlations between particles in the region
4.0 < |p| < 7.5 GeV/c : there is a strong deviation from
zero in the interval 2.7 < yo < 3.2,

0.2 |

0.2 |
0.2 |
0.2 |

02 F

4.2 The method of effective mass

Now we consider the method of effective mass ( MEM)
. which 15 a standard tool to extract the information

on the correlation between secondary particles.

o 5
;_E b 6 m N = o5 E‘
0.3 ] 0.3 13 2 2.3
b
n = = 1 il | =
0.3 0.73 1.23 13 173 2 2.25
r
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L
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Betfore we proceed a few remarks are i order: i wvar-
1ous theorelical approaches 1t 1= asually assumed that ac
high-energy nuclens-nuclens collisions: 1) a majority of
produaced secondary plons are emitted basically throwuwsh
the mechanismmm of production and decasy of the light res-
onances; 11) a significant portion of the protons are pro-

Adunced as a result of Ad=obar decavs . Fhuarther, it is
also assunmed that suach processes consist of two steps.
Firsc, (2 — &) particles and the resonance are produced.

Second., the resonance decay=s on b-particles and one mas
cxpect that duae to kinematics there are some correla-
ticons between these LS-particles. In order to extract these
correlations we are forced to consider all possilbhle combia-
natiomns of the b-particle-participants and compare with
the known resonance masses. A= a result, thhais proceduare
wives rise to A large nonphy=ical backsground contrilbuation
to the analy=sis.

Im particular, i the NMEMNM one considers thhe effective
mas= tor k secondary particles as

£ L 102
Adia g = {I:E CET — (> :;i'-_?%,']ﬂ} ; (2
+=1 +=1

If the condition Ad o . = AdT75°, holds, omne may con-
clude that a resonance with the mas=ss AdT757, 1s 1dentified
i the data. In addicion, one assurmes that each identi-
fied resonance contributes to the total cross section with
own welght (probabillity ). To carry omn this 1dea, each
resonance 1s approximated by the Breight-Wigner distri-
bhuticon with the identified mass and the resonance widch.
Warving the welghts of 1dentified resonances, one 1= alrn-

img to reach the best agreement with the observed inclu-
s1ve cross sectlons of resonances production.



To elucidate a relation between BEMT and MEM, we
consider the distributions of charged particle pairs emit-

ted in 12CC -interactions at 4.2 A GeV /e

. Figs.!

_ demonstrate the distributions of (7 %p)-, (77 p)—, (pp)—,
and (7w+ 7~ )—pairs emitted in three ranges of the momen-

tum distribution of the secondary particles: 0.1 — 1.14= oL
and 4.0-7.5 GeV/c

distributiond hre normalized to the total numbe
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To extract the information on the resonance production
from data presented in these figures it is necessary to
evaluate a background contribution. It is indeed a diffi-
— cult problem which cannot be solved completely. There-
fore, to construct the backeground we use the method of
mixing events . In this method the background is
defined by the pairs constructed from the particles pro-
duced in different events only. Needless to say, a method
that is independent of such a background is required to
interpret the data correctly. In fact, the RMT results,
discussed in the previous section, serves the useful pur-
pose of giving an independent view of the latter analysis.

One observes that in the interval of momentum 0.1 —
—— 1.14 GeV /e no clear-cut distinction exists be-
tween experimental and background distributions. In
this interval we have obtained very good statistical con-
ditions: 41615 (7T p)—, 43626 (7~ p)—, 52992 (pp)- and
39112 (wt7~ )—pairs. One concludes that there is an
absence of any manifestation of resonance production.

T 0T XN

FEEE
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duces the Poisson distribution for the behavior of the

pls)-tunction

In the second interval . we have obtained
173 (7 tp)-, 16470 (7~ p)—, 167094 (pp)— and only 16
(7t 7~ )—pairs (are not shown). There is some deviation
of the experimental distribution from the background
only for (mtp)-pairs. We believe that it is connected
with the production of the ATT-isobars with masses
ma++ = 1.232 and 1.650 (GeV/c?). Note that the ob-
servation of ATT-isobars with masses ma++ = 1.232
GeV/c? has been reported , while the ones with
masses 1.650 GeV/c? are observed for the first time.
There are not any visible deviations between the exper-
imental data and the background for the distribution of
the (77 p)— and (pp)-pairs. In this interval the RMT ap-
proach produces a visible deviation from the Poisson dis-
tribution for the behavior of p(s)-function
It appears that the RMT is able to provide a hint on the
resonance production.
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In the third interval of the momentum distribution of
charged secondary particles we have 10 (77 p)— (are not
shown) and 9522 (pp)-—pairs ). Here, the (7 Tp)-
pairs are absent. The deviation of the signal relative to
the backeround is above 20%. It is well known that in
this interval the striping protons are the dominant ones
(with a small contribution of deuterons, tritons and oth-
ers) |. These protons carry a maximum momentum
near the value 4.2 GeV /e, It results in a very small de-
viations of the particle trajectories in the magnetic field
of the setup. In fact, it is the worst situation for the
accurate determination of the errors in the momentum
distribution. The RMT approach produces in this inter-
val a distribution of the densitv p(s) close to the Wigner

surmise form . As stressed above, such a dis-
tribution is associated with the breaking of regularity in
the spectral properties of a quantum syvstem due to either
external or internal sources. We  have already men-
tioned that the onset of the Wigner distribution for the
density p(s) (breaking of the regularity) could indicate

the presence of errors in the measurement.
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One observes a clear cut distinction between the back-
ground and experimental distribution of (pp)—pairs in

4.0 — 7.5 GeV /c . Howewver, there is not a
solid basis to associate such a strone deviation with a
production of di-barvon resonances since the inclua-

sive cross section of such "resonances” would exceed es-
sentially those that are predicted by various theoretical
models.

In all considered distributions there is an evident dom-
inance of the pp-pairs. To trace the evolution of the pp
correlations we select only the momentum and angular
distributions of the protons in three intervals
In the first interval the angular distribution | -
of the pairs covers almost all angles of the semisphere
with some concentration around ~- 50Y. In the second
interval the momentum distribution of the pairs |
is spread smoothly over all considered wvalues of the mo-
mentum (1.14— 4.0 GeV /c). There is some concentration
of the emitted pairs in the angular distribution. which
covers a solid angle ~ 20" . In the third inter-
wval - one observes that striping protons have
similar momenta and almost zero angle in the distribu-
tion. Ewvidently, under such conditions, one mayv expect
a large probability for the interaction in the final state,
which leads to the narrow peak appearances in the effec-
tive mass spectrum of the proton pairs. Such interaction
effects Iin a final state are well known for the particle
production and decav process at high energies We

recall that for this interval the RMT approach provides
the Wigner distribution for the behavior of the density

p(s).
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Left: The distributions dN/d|p| as a function of the
measured momentum i three ranges of the momentum dis-
tribution of the protons; 0.1 — 1.14 {a); 114 = 4.0 (c] and
4075 (e) (GeV/c). Right: The distributions dN/df as
a function of the angle in the lab frame for the momentum
distrubution; 0.1 - 1.14 (b); 1.14 = 4.0 (d) and 4.0 =75 (f)
(GeV/c). The angular distribution is normalized to nity,

Ipl, GeV /¢ 5)

The comparison of the RMT results with the NMEM
analvsis manifests in fact that there are evident corre-
lations between behawvior of the densitv p(s) in different
energv (momentum ) intervals and the appearance of new
sources that breaks the regularityv in the momentum dis-

tribution of the charged particles.




c Conclusion
o
an_ Ve propose a novel statistical approach to the analysis of experimental data obtamed m nucleus-

nucleus collisions at high energies which borrows from methods developed within the context of
Random Matrix Theory. It 1s applied to the detection of correlations in momentum distributions of
emitted particles. We find good agreement hetween the results obtamed m this way and a standard
analysis based on the method of effective mass spectra and two-pair correlation function often used in
high energy physics, The method introduced here 1s free from unwanted hackground contributions.
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