φ and ω decay modes ratios A.Stavinskiy, ITEP, Moscow

Physical motivation
Sensitivity (toy model estimate)
Possibility (real data)
Conclusion

If resonance decays before kinetic freeze-out \Rightarrow Possible rescattering of hadronic daughters \Rightarrow Reconstruction probability decrease for hadronic mode

Possible applications:

- K*⁰/K may reveal time between chemical and kinetic freezeout
- Branching ratio between different decay modes may be sensitive to reaction mechanizm (not only due to possible mass modification)

t

hadrons

with & without QGP

quarks&gluons

DECAY MODES RATIOS- NEW SOURCE OF INFORMATION

Decay inside interaction region _{CT} < 50 fm

Combinatorial background for hadronic modes ct >5 fm

Possible candidates: $\omega(782)$ $(c\tau = 23 \text{ fm})$ $\phi(1020)$ $(c\tau = 44 \text{ fm})$

Branching ratio between different decay modes may be changed due to rescattering or (for example) due to possible mass modification

Solution-three (or more) modes

 $\omega(782) \rightarrow \Pi^+ \Pi^- \Pi^0$ **B.R. 0.89** $\omega(782) \rightarrow \Pi^+ \Pi^-$ B.R. 0.017 B.R. 0.089 $ω(782) \rightarrow Π⁰γ$ $\omega(782) \rightarrow e^+e^-$ B.R. 0.000072 $\phi(1020) \rightarrow K^+ K^-$ B.R. 0.49 $\phi(1020) \rightarrow \eta\gamma$ **B.R. 0.013** $\phi(1020) \rightarrow e^+e^-$ B.R. 0.000297

Sensitivity

¹₀~cτβ/ $\sqrt{(1-\beta^2)}$ ~ ~(β=1/3 for this estimate)~ ~15fm(for φ)&8fm(for ω)

Toy Model

¹_i~2fm for any hadron & 1fm for any pair of hadrons

Estimate Results

Relative supression of photonic & hadronic modes with respect to leptonic mode

1/10

l -decay products trajectory length within matter 10 -decay length

1/10~3-5?

Sensitivity

1) l~30fm ALICE?

1 > R where r~ 5-7 fm

space-momentum correlations → R-length of homogeneity

Femtoscopy

2) v~0.1c CBM?

Fix target experiment

Low momentum mesons tend to decay inside the hot/dense matter

Possibility

arXiv:0801.4020

Source: Vladislav Pantuev , PHENIX for XIX Baldin seminar, Dubna 2008

Possibility sources: RFachini(BNL,5QM2007) KNakamiya(Hiroshima, QM 2008)

STAR

23500

23000

22500

22000

21500

21000

20500

600

0.5

Possibility

<u>PP collisions: Consistency between $\phi \rightarrow K^+K^-$ and $\phi \rightarrow e^+e^-$ </u>

In p+p, spectra of e+e- and K+K- show reasonable agreement!

Possibility

<u>Spectra comparison</u> <u>between</u>

 $\phi \rightarrow e^+e^-$ and $\phi \rightarrow K^+K^-$

Errors are too large to make any clear statement about the comparison of spectra for $\phi \rightarrow e^+e^-$ and $\phi \rightarrow K^+K^-$.

Conclusion

Decay modes ratios-new source of information

Vector mesons – candidates for the study of the effect

To Do

- To make calculations for the effect of interest within realistic model
- To create algorithm for photonic modes identification in AA interactions
- To check this algorithm for ALICE&CBM conditions with realistic simulations

Extra slides

• $\Phi \Rightarrow$ information early stages of the collision

- Φ ⇒ different production for hadronic and leptonic channels

 S. Pal *et al.*, Nucl.Phys. A707 (2002) 525-539
- $K^* \Rightarrow$ time between chemical and kinetic freeze-out

P. Fachini BNL, SQM2007 If resonance decays before kinetic freeze-out ⇒ not reconstructed due to rescattering of daughters
 K⁰ (cτ = 4 fm) survival probability
 ⇒ time between chemical and kinetic freeze-out, source size and p_T of

 Chemical freeze-out ⇒ elastic interactions regenerate freeze-out

may reveal time between chemical and kinetic freeze-out

 K*/K⁻ ⇒ p+p ratio reproduced by thermal model at chemical freeze-out ⇒ Au+Au reproduced by thermal model at kinetic freeze-out Y. Nakamiya Hiroshima University, Japan for the PHENIX collaboration QM 2008, India

Branching ratio between $e^+e^$ and K⁺K⁻ may be sensitive to mass modification, since M_{phi} is approximately 2 × M_K.

 \rightarrow Compare yields of $\phi \rightarrow e^+e^-$

and $\phi \rightarrow K^+K^-$

Φ Production \Rightarrow K⁺K⁻ and e⁺e⁻

The leptonic channel yield is a little higher than hadronic channel
 More accurate measurement is required to confirm whether there is branch ratio modification

What is the difference?

- Modes absorbtion vs Mass modification
 Standard mesons vs modified mesons
 - $\phi \rightarrow KK \& \phi \rightarrow \eta \gamma$
- Modes absorbtion vs K/K* ratio

 Reference- Lepton modes vs thermal model
 Hadronization stage vs equilibrium stage

 Modes absorbtion vs both other approaches

 Internal cross-check
 3 modes

<u>Real σ_{MN} in matter can differ from</u> that in free space

 ω photoproducton on nuclear targets (ELSA) M.Kotulla et al., ArXiv: nucl-ex/08020980 $\sigma_{\omega N} \approx 70$ mb (in nuclear medium, 0.5 < P < 1.6 GeV/c) $\sigma_{\omega N} \approx 25 \text{ mb}$ (in free space - the model calculations) photoproducton on nuclear targets T.Ishikawa et al., Phys.Lett.B608,215,(2005) $\sigma_{oN} = 35 \pm 14$ mb (in nuclear medium) $\sigma_{oN} \approx 10 \text{ mb}$ (in free space) "φ-puzzle"

2008/09/09 19.15

Formulas

 $W_i = B_i * (\exp\{-l/l_0\} +$ $+ \int_{0}^{l/l_{0}} \exp\{-\frac{x}{l_{0}}\}d(\frac{x}{l_{0}})[1 - \int_{0}^{(l-x)/l_{i}} \exp\{-\frac{y}{l_{i}}\}d(\frac{y}{l_{i}})]) =$ $= B_i * \left(\frac{\exp\{-l/l_0\}}{1 - l_i/l_0} + \frac{\exp\{-l/l_i\}}{1 - l_0/l_i} \right) \rightarrow$ $\rightarrow \{ B_i(l_i \rightarrow \infty) \\ B_i * \exp\{-l/l_0\}(l_i \rightarrow 0) \}$

Electron, hadron and photon in PHENIX

Why φ ?(common part)

The φ –meson was proposed in the middle of 80'(Koch,Muller,Rafelski PR142,ShorPRL54) as one of the most promising QGP messengers because of the following reasons:

- = ϕ interaction cross section is small and ϕ will keep information about the early hot and dense phase
- strangeness local conservation for ϕ