

Numerical Modeling of 3D Field Distribution of the SP–57 Magnet for the MARUSYA setup

A. A. Baldin, E. E. Perepelkin, N. S. Rossiyskaya, V. L. Smirnov, I. P. Yudin

Joint Institute for Nuclear Research, Dubna, Russia

General view of MARUSYA setup

General view of spectrometric magnet SP-57

Calculating area 1/8 part of magnet

Mathemtical formulation of the magnetostatic problem

$$div\vec{B}(p) = 0 \quad rot\vec{H}(p) = \vec{J}(p), \quad p \in \Omega$$
$$\vec{B} = \mu_0 \mu(H)\vec{H}$$
$$B_{fn} = B_{vn} \quad H_{f\tau} = H_{v\tau}$$

Statement of a problem with two scalar potentials

$$\vec{H}(p) = \vec{H}_{c}(p) - \nabla \varphi(p), \quad p \in \Omega_{v}$$

$$\dot{H}(p) = -\nabla \psi(p), \quad p \in \Omega_f$$

$$\vec{H}_{c}(p) = \frac{1}{4\pi} \int_{\Omega_{c}} \left[\vec{J}(q), \nabla_{q} \frac{1}{r_{pq}} \right] d\omega_{q}$$

$$\begin{cases} div \Big[\mu \big(|\nabla \psi| \big) \nabla \psi \big(p \big) \Big] = 0, \quad p \in \Omega_{f} \\ \Delta \varphi \big(p \big) = 0, \quad p \in \Omega_{v} \\ \psi \big(p \big) - \varphi \big(p \big) = -\int_{Q}^{p} \vec{H}_{c} d\vec{l} , \quad p \in \Gamma \\ \mu \frac{\partial \psi}{\partial n} \Big|_{\Gamma_{+}} = \frac{\partial \varphi}{\partial n} \Big|_{\Gamma_{-}} - \big(\vec{H}_{c}, \vec{n} \big) \Big|_{\Gamma_{-}} \end{cases}$$

Curve of excitation for magnet SP-57

Symmetry 1/8

System of coordinates

The calculation grid in the aperture was following: along X from 0 to 0.90 m, step hx=0.01 m along Y from 0 to 0.10 m, step hy=0.01 m along Z from 0 to 1.50 m, step hz=0.01 m

The grid of measurements was following: along X from -0.64 to 0.56 m, step hx=0.02 m along Y from -0.03 to +0.03 m, step hy=0.03 m along Z from -0.77 to 0.77 m, step hz=0.01 m

Data are represented in system of coordinates in which the axis Z is directed on a beam of primary particles flying on a target, and axis X perpendicularly upwards to median plane, and the axes forms the right three of vectors. The beginning of system of coordinates is the center of a magnet SP-57.

Results of calculations.

Results of calculations.

Space distribution a component B_y, B_x, B_z of a magnetic field SP-57

Distribution of component $B_y(z), B_z(z), B_z(z)$ with fixed x = 0, y = 0 m (median plane, centre of magnet) and difference of a basic component ΔB_y

plane, centre of magnet) and difference of a basic component ΔB_y

Distribution of component $B_y(z), B_x(z), B_z(z)$ with fixed x = 0, y = 0.03 m and difference of a basic component ΔB_y

difference of a basic component ΔB_y

Conclusion

- Calculating map of a magnetic field of the spectrometer MARUSYA is by received in full volume (-0.90 m≤X≤0.90 m,-0.5 m≤Y≤0.5 m, 1.50 m≤Z≤1.50 m)
- Comparison of calculating distribution of a magnetic field with the measurements of field of a magnet SP- 57 is resulted
- Carried out research allows to make the conclusion that it is possible to create a calculating map of a magnetic field in a range of working fields (up to 2 T)

Literature

- [1] Балдин А.А. ..., И.П. Юдин Измерение объемной карты магнитного поля для магнитооптического спектрометра «МАРУСЯ» // ОИЯИ, Р13-2006-67. Дубна, 2006.
- [2] А.А. Балдин, ..., И.П. Юдин Численное моделирование распределения поля магнита СП–40 установки "МАРУСЯ" и сравнение результатов с экспериментальными данными // ОИЯИ, Р11-2006-99, Дубна, 2006, 14с

Bunch passes through SP-57 magnet

Final position of the bunch

SP-57 magnet, I=600A

Bunch passes through SP-40 magnet

Final position of the bunch

SP-40 magnet, I=600A

