



**Measurement of Photon + Jet** 

## **Differential Cross Section**

## in p-pbar Collisions at DO

Nikolay Skachkov

## JINR, Dubna

On behalf of Do Collaboration

Phys.Lett. B 666 (2008) 435-445



## This work is a natural **development** of the previous Run II publication:

"Measurements of the isolated photon cross section in pbarp Collisions at  $\sqrt{s} = 1.96$  TeV",

Phys. Lett. B {639}, 151 (2006),

where the problem of photon identification was carefully studied (more material appeared in the detector after Run I).

The main background comes from QCD events  $gq \rightarrow gq, gg \rightarrow gg$ ,  $qq \rightarrow qq, \ldots$ , i.e. from  $\pi^0 \rightarrow \gamma^0 \gamma^0, \omega - \gamma, \eta - \gamma, K_s^0 - \gamma, \ldots$  decays as well as from EM-jets (most hard background).

The same methods of photon identification are used in this analysis.







- Direct photons come unaltered from parton subprocesses to EM calorimeter
- Comption process dominates at  $p_{T}^{\gamma} < 120 \text{ GeV}$
- Cross section sensitive to gluon distribution  $G(x_{\tau},Q^2)$  inside colliding hadrons  $\Rightarrow$  constrain PDFs?



There is also another diagram that describes fragmentation into a photon.

Its contribution is supressed by photon isolation criteria and drops with  $p_t^{\gamma}$  -growth





The measurement of the triple differential cross-section for "ppbar  $\rightarrow \gamma + \text{jet} + X$ " was done in 4 pseudorapidity regions,

(the kinematic domain in the x – Q<sup>2</sup> plain covered by this 4 regions and the chosen  $p_T^{\gamma}$  range significantly extends previous " $\gamma$  + jet(s)" measurements of ISR- AFS, UA2 and CDF-Collaborations.)

defined by the following boundaries:

a) central 
$$|\eta^{\gamma}| < 1.0$$
  
b) central  $|\eta^{Jet}| < 0.8$ , or forward  $1.5 < |\eta^{Jet}| < 2.5$ 

(The rates of collected events in these Regions are: ~34.4% in Region 1, ~30.2% in Region 2, ~20.1% in Region 3, ~13.3% in Region 4.)

The corresponding "photon + jet" relative angular orientations look as follows:







 $\eta = -\ln(tg\theta/2)$ 



Nikolay Skachkov: ISHEPP XIX, Dubna, Sept.29-Oct.4, 2008



Reg.4

 $\eta = -\ln(tg\theta/2)$ 









<u>JETPHOX</u> (P.Aurenche et.al) allows to estimate fragmentaion photon effect.



Fraction of qg  $\rightarrow$ qg processFraction of ( $\gamma$  +jet\_direct) / ( $\gamma$  +jet\_dir+fragment) where<br/>estimated with PYTHIAFraction of ( $\gamma$  +jet\_direct) / ( $\gamma$  +jet\_dir+fragment is estimated with JETPHOX





## General selection cuts:

- 1. Leading Jet:  $|\eta^{Jet}| < 1.0 \text{ or } 1.5 < |\eta^{Jet}| < 2.5; p_T^{Jet} > 15 \, GeV$
- 2. Photon:  $|\eta^{\gamma}| < 1.0;$   $30 < p_T^{\gamma} < 300 \, GeV$
- 3.  $\gamma$  Jet separation in  $\eta$ - $\varphi$ :

$$\Delta R(\gamma, Jet) = \sqrt{\left(\eta^{\gamma} - \eta^{Jet}\right)^2 + \left(\varphi^{\gamma} - \varphi^{Jet}\right)^2} > 0.7$$

- 4.  $|z_{vtx}| < 50 \,\mathrm{cm};$  vertex includes at least 3 charged tracks
- 5.  $E_T^{miss} < 12.5 \,\text{GeV} + 0.36 \, p_T^{\gamma} \,\text{(cracks, } \eta_{det}^{max} = 5 \,\text{, cosmics and W's})$
- Events are required to pass one of the unprescaled EM-trigger
  Nikolay Skachkov: ISHEPP XIX, Dubna, Sept.29-Oct.4, 2008





## Photon candidate selection cuts:

1.  $\gamma$  - candidate is an isolated cluster of energy in calorimeter layers EM1 – EM4 (cells 0.1 x 0.1 of 2, 2, 7 and 10 rad. length)

$$R_{clust}^{\gamma} = \sqrt{\Delta \eta^2 + \Delta \varphi^2} = 0.2$$

- 2. γ candidate originates from the best primary vertex:fit of:
  - center of gravity of EM cluster energy in EM1 – EM4 layers &
  - 2. Central Preshower cluster position
- 3. EM fiducial cuts (internal calorimeter structure + cracks) total geometrical acceptance A=0.80 0.83
- 4. EM fraction in calorimeter: *EMFr* > 0.96 (deposited E)
- 5. Probability of charged track matching  $\leq 0.001$





## **Photon candidate selection cuts:**

- 6.  $Iso(\Delta R = 02) = \frac{E(R \le 0.4) E(R \le 0.2)}{E(R \le 0.2)} \le 0.07$
- Limit on the width of energy cluster in the finely-segmented
  EM3 layer (cells with 0.05 x 0.05 size)

3 additional variables (used in D0 MC/data Z→ee analysis) 1) number of cells in EM1 (with  $E_T^{cell} > 0.4$ ) 2) fraction of E deposited in EM1 (with  $E_T^{cell} > 0.4$ ) 3)  $\sum P_T^{track}$  in the ring (0.05 ≤ R ≤ 0.4) (with  $p_T^{track} > 0.4$ ) used as input for ANN (JETNET)

8. Additional cut (7) on the ANN output:  $O_{NN} > 0.7$ , is applied.



ANN methods allowed to achieve a good agreement between  $Z^0 \rightarrow e^+e^-$ D0 data and MC.

Plot shows the normalized distribution of ANN output  $O_{NN}$  for  $e^{\pm}$  from  $Z^0$  decay in data and MC events.





ANN methods developed for analysis  $Z^0 \rightarrow e^+e^-$  D0 data were applied to separate signal " $\gamma + jet$ " from background.

The plot shows the normalized distribution for data, MC " $\gamma$  + *jet*" signal and QCD dijet "*jet* + *jet*" background events (one jet appears as EM-jet) for

 $44 < p_T^{\gamma} < 50 \, GeV$ after application of the main selection criteria.





**JINE** 

The photon selection eff.  $\mathcal{E}_{s}^{\gamma}$  as function of  $p_{T}^{\gamma}$  (statistical uncertainties are shown)

 $\mathcal{E}_{s}^{\gamma}$  overall systematical uncertainty varies within 4.5-5.2% depending on  $p_{T}^{\gamma}$  interval.

It is caused by:

- 1. anti-track match cut: 3%
- 2. photon pointing cut uncertainty: 2%
- 3. ANN cut uncertainty: 2%
- photon selection efficiency 0.9 0.8 0.7 0.6 0.5 0.3 0.2 0.1 p<sub>T</sub><sup>Y</sup> (GeV)
- 4. correction due to difference from  $Z \rightarrow ee$  events: 1.5-2%
- 5. fitting uncertainty: <1%.





Dependence of the " $\gamma$  + *jet*" events **PURITY** on  $p_T^{\gamma}$ In Region 1.

Plot shows default fit (red full lines), statistical error band from the default fit (purple dashed lines), a band in systematic uncertainty (green dotted lines) and the total uncertainty (blue dash-dotted lines).  $N^{\gamma}$ 

$$P = \frac{1}{N^{\gamma} + N^{EM-jet}}$$

 $N^{\gamma}$  - N of signal events  $N^{EM-jet}$ - N of bkgd events.



Main purity fitting function  $P_f = 1/\left[1 + a(p_T^{\gamma})^b(1 - 2p_T^{\gamma}/\sqrt{s})^c\right]$ 



PURITY uncertainty (4-10%)

appears mainly due to:

- 1. uncertainties of fitting functions parameters;
- 2. choice of different forms of fitting functions;
- 3. choice of the binning (3.5%);
- 4. statistics in bin;
- 5. uncertainty in the choice of parameters of fragmentation functions of photon parents mesons  $D_q^{\pi}(z)$ ,  $D_q^{\eta}(z)$ ,  $D_q^{\sigma}(z)$ ,... used in Pythia generator for MC production. This uncertainty was found to be 5% at  $p_T^{\gamma} \cong 30 \, GeV$ , 2% at  $p_T^{\gamma} \cong 50 \, GeV$ , and 1% at  $p_T^{\gamma} \cong 70 \, GeV$ .





$$\frac{d^{3}\sigma}{dp_{T}^{\gamma} d\eta^{\gamma} d\eta^{jet}} = \frac{NP f_{unsm}}{L_{int} \Delta p_{T}^{\gamma} \Delta \eta^{\gamma} \Delta \eta^{jet} A \varepsilon_{t} \varepsilon_{s}^{\gamma} \varepsilon_{s}^{jet}}$$

**N** – number of selected " $\gamma$  + jet" events after cuts  $\rightarrow$ 

**N\_selected = 2.4\*10E+6 events**, what corresponds to  $L_{int}$  =1.1±0.07fb-1

- P photon purity;
- $f_{unsm}$  unsmearing correction factor;
- $L_{\text{int}}$  total integrated luminosity;  $\Delta p_T^{\gamma}, \Delta \eta^{\gamma}, \Delta \eta^{jet}$  bin sizes;
- A geometric acceptance: A = 0.80 0.83;
- $\mathcal{E}_t$  trigger efficiency;
- $\mathcal{E}_{s}^{\gamma}$  photon selection criteria efficiency: 0.60 0.75;
- $\mathcal{E}_{s}^{jet}$  leading jet selection criteria efficiency: from 94% to 99-100%, with syst. uncertainties of 5.7% at  $p_{T}^{\gamma} \cong 30 \, GeV$  and 2% at  $p_{T}^{\gamma} > 200 \, GeV$ .







Collider Run II Integrated Luminosity

Now DZero has collected almost 3 fb-1 of data (i. e. doubling every year).







Nikolay Skachkov: ISHEPP XIX, Dubna, Sept.29-Oct.4, 2008 pr (GeV)





## Total statistical errors are:

- about 0.2% 14.5% in Regions 1 and 2;
- about 0.3% 21% in Regions 3 and 4.

## Total systematical errors are:

- about 11.1% 15.4% in Regions 1 and 2;
- about 11.2% 15.2% in Regions 3 and 4.

#### Total errors are:

- about 13.8% 18.5% in Regions 1 and 2;
- about 14.3% 24.2% in Regions 3 and 4.

For more details see Tables of differential cross sections for different Regions.











## Theory to Data ratio for Reg.3 and Reg. 4





The ratio of the measured cross section in Regions 1 and 2 to the NLO QCD predictions done with various PDF. Statistical uncertainties are shown.





The ratio of the measured cross section in Regions 3 and 4 to the NLO QCD predictions done with various PDF. Statistical uncertainties are shown.





The ratio of the differential cross sections in Region 1 to Region 2 (left). Right plot is the ratio of cross sections in Region 1 to Region 3.





The ratio of the differential cross sections in Region 2 to Region 3 (left). Right plot is the ratio of cross sections in Region 3 to Region 4.







#### **Summary**

- 1. D0 performed a measurement of triple differential cross section of " $\gamma$ +jet" events production with high statistics:  $N_{event}^{selected} = 2.4*10E+6$ , i.e.  $L_{int} = 1.1fb-1 \rightarrow$  (~34.4% in Region 1, ~30.2% in Region 2, ~20.1% in Region 3, ~13.3% in Region 4).
- The data (that show 5 orders of magnitude variation in the cross section) qualitatively fit to QCD NLO predictions in four kinematical regions defined by photon and jet pseudorapidities. The dependence of Data/Theory ratio on PDFs and QCD scale parameters choice is studied.
- Nevertheless, the ratios of cross sections from different pseudorapidity Regions (especially between Regions 1 and 3 as well as between Regions 2 and 3) show a noticeable deviation from theory predictions.