The search for deeply-bound kaonic nuclear states at J-PARC

F.Sakuma, **RIKEN**

S.Ajimura¹, G.Beer², H.I D.Faso^{5,6}, H.Fujioka¹⁶, T.Hiraiwa¹⁶, A.Hirtl⁴, M.Iwasaki¹², P.Kienle^{4,} S.Okada¹², H.Outa¹², D F.Sirghi⁸, S.Suzuki¹³,

Motivation and Introduction • J-PARC E15 Experiment Preparation Status Summary

⁷, S.Choi³, C.Curceanu⁸, Hanaki⁷, R.S.Hayano⁹, watari⁴, K.Itahashi¹², .Nagae¹⁶, H.Ohnishi¹², .Sekimoto¹³, D.Sirghi⁸, oyoda¹³, K.Tsukada¹²,

¹Osaka University, Japan, ²University of Victoria, Canada, ³Seoul National University, South Korea, ⁴Stefan Meyer Institut fur subatomare Physik, Austria, ⁵INFN Sezione di Torino, Italy, ⁶Universita' di Torino, Italy, ⁷Tokyo University of Science, Japan, ⁸Laboratori Nazionali di Frascati dell'INFN, Italy, ⁹University of Tokyo, Japan, ¹⁰Osaka Electro-Communication University, Japan, ¹¹Tokyo Institute of Technology, Japan, ¹²RIKEN, Japan, ¹³High Energy Accelerator Research Organization (KEK), Japan, ¹⁴Technische Universitat Munchen, Germany, ¹⁵INAF-IFSI, Sezione di Torino, Italy, ¹⁶Kyoto Univ., Japan

Physics Motivation

Deeply-Bound Kaonic Nuclei (Theory)

various theoretical predictions for kaonic nuclei. e.g., K-pp

Method	Binding Energy (MeV)	Width (MeV)
ATMS	48	61
Chiral Lagrangian	118	58 (non-mesonic)
Faddeev	55-70	90-110
Faddeev	79	74
chiral SU(3)	19+/-3	40-70 (πΣN-decay)
•W •h Koike, Harada PLB652, 262 (20 DWIA 1400 ³ He(K-m)	whether the k is deep or s ow broad is 07).	pinding energ h <i>allow</i> the width ?
	Method ATMS Chiral Lagrangian Faddeev Faddeev Chiral SU(3) • Koike, Harada PLB652, 262 (20 DWIA 3He(K-m)	MethodBinding Energy (MeV)ATMS48Chiral118Lagrangian118Faddeev55-70Faddeev79Chiral SU(3)19+/-3•whether the k is deep or si •how broad isKoike, Harada PLB652, 262 (2007). DWIAMethodWita

Deeply-Bound Kaonic Nuclei (Experiment)

Deeply-Bound Kaonic Nuclei (Experiment)

each experiment measures only *formation* or *decay*

(except for E549 experiment)

the situation is still controversial !!!

We need conclusive evidence with observation of *formation* and *decay* !

J-PARC E15 Experiment

Experimental Principle

search for K-pp bound state using ³He(K⁻,n) reaction

J-PARC (Japan Proton Accelerator Research Complex)

J-PARC (Japan Proton Accelerator Research Complex)

pho 📲

еуе

4 C

S

CTITIT.

P.7 Fare

50GeV-PS with the highest beam

Power (0.75MW) !

Bird

0 FR Feb 2.00

TE

CS(3GeV)

Hadron Experimental Hall @ J-PARC

J-PARC E15 Setup

Cylindrical Detector System (CDS)

Expected Kinematics for K-pp Decay

binding energy = 100MeV/c²

Calculated using Geant4

- Isotropic decay of K-pp
- •with forward neutron

CDS xy-plane

Expected Spectrometer Performance

Calculated using Geant4

Preparation Status

Solenoid Magnet

Solenoid magnet for E15 experiment has been constructed.

- •Field strength: upto 0.7T
- •Space inside : Φ =1.2m, L=1.2m
- •weight : 23 t

Cylindrical Drift Chamber (CDC)

Cylindrical Drift Chamber (CDC)

Now the CDC commissioning is started at J-PARC

-004

Preamp on CDC

We brought CDC to J-PARC site Now aging of the CDC is started

- Chip : CXA₃₁₈₃Q (SONY, low noize ASD IC, τ=16nsec)
- +3V 0.37A
- -3V 0.13A

42mm

• Output : LVDS differential

Input

Pre-Amp Prototype

Analog out

Output

Hodoscope Counter (CDH)

CDH is used for the charged trigger and particle identification.

Plastic Scintillator : 99x30x700 mm³ (WXTXL) Configuration : 36 modules PMT: Hamamatsu H8409 (fine mesh) x 72 $\sigma_{int} = 76psec$

the complete CDH system will be installed by the end of 2008

Kaon Decay Veto Counter

reduce fake triggers caused by decay of K- beam
 requirements for the detector

 inside CDC & magnetic field
 small and compact

plastic scintillators embedded with wavelength shifting (WLS) fibers are in progress

Liquid ³He Target System

³He liquefied system is completed by the end of this year

The x-ray detection device will be installed in the target next year

E17 (kaonic ³He X-ray) will be ready in Apr. 2009 (First experiment @J-PARC Hadron-Hall)

Cooling test with ⁴He gas

Neutron Counter

same neutron counter used for KEK-PS E549 experiment

20x5x150 cm³ Plastic Scintillator Configuration : 16 (wide) x 7 (depth) Surface area : 3.2m X 1.5m

new support frame

Beam Line Spectrometer

- Design of the spectrometer is almost completed
- Commissioning of the detector is under the way
- will be ready by Jan. 2009

Summary

- J-PARC E15 experiment
 - Search for the simplest deeply-bound kaonic
 nuclear state, K⁻pp, by in-flight ³He(K-,n) reaction
- Detector construction is in progress
 Solenoid Magnet, CDC, CDH, ³He Target, and other detectors

Time table						
Jan. 2009	Start beam tune at K1.8BR beam line (J-PARC 50GeV PS first beam!)					
Apr. 2009	able to start E17 (Kaonic ³ He X-ray spectroscopy)					
Sep. 2009	able to start E15 (Kaonic Nuclei)					

backup

"K-pp" and "Two Nucleon Absorption"

³He(K-,n) K⁻pp formation

Two nucleon absorption

"two nucleon absorption process" can be identified!

Event Rate Estimation

Parameters

- Assume production cross section as $\sigma_{3He(K-,n)K-pp}$ = 10 µb/sr
- Acceptance of Neutron counter = 30 msr
- Target thickness = 20cm, density = 0.080 g/cm³
- Neutron detection efficiency = 30%
- Assume 1/3 of K-pp decay in to (Λ +p or Σ^0 +p)
- Λ +p reconstruction efficiency in CDC = 47%
- Expected event rate
 - -1.86x10⁻⁹ per an incident K⁻
- Event rate per day
 - 0.8x10⁶ K- per 3.53s (0.7s flat top)
 - 24475 spill per day = 1.96x10¹⁰ K- per day
 - ~ 50 events per day

We will expect about ~1500 events in a month !!!

Background Estimation

Source of background

- Quasi free scattering and reaction
 - Following 11 channels are considered

- Only 20-30 triggers/spill expected from these reactions
- In total, estimated trigger fired by background is estimated to be ~ 100 Hz

Geometrical Acceptance

•generated at the center of CDS

●0<p<1 GeV/c, flat distribution

Calculated using Geant4

- •60< θ <120 degree, flat distribution
- ●accepted = track with a CDH-hit

Detailed Cell Configuration of CDC

layer	wire	super-layer	number of	radius [cm]	cell width	drift length	offset angle	tilt angle
1	X		Cells	19.05	lucgice	0.83	[degree]	
2	X'	A1	72	20.4	5	0.89	0	0
3	Х			21.75		0.95		0
4	U	114	00	24.85		0.87	10	3.72
5	U'	01	90	26.2	4	0.91	12	3.92
6	V	\/1	100	29.3	26	0.92	10.9	3.95
7	٧'	VI	100	30.65	5.0	0.96	10.8	4.12
8	Х	۸2	120	33.75	2	0.88	0	0
9	X'	AZ AZ	120	35.1	J	0.92	0	0
10	U	112	150	38.2	2.4	0.80	7 2	3.43
11	U'	02		39.55		0.83	1.2	3.55
12	V	\/2	160	42.65	2 25	0.84	6 75	3.59
13	V'	٧Z	100	44	2.25	0.86	0.75	3.71
14	Х	٨3	180	47.1	2	0.82	0	0
15	X'	AD	180	48.45	2	0.85	0	0

mesonic & non-mesonic decay mode

important to measure not only non-mesonic decay mode

Thick-GEM TPC

Thick-GEM @ RIKEN

Thick-GEM

 a robust, simple to manufacture, high-gain gaseous electron multiplier

cost-effectively fabricated from double-clad
 G10 plates, using standard printed circuit board
 (PCB) techniques

holes are mechanically drilled and the hole's rim is chemically etched to prevent discharges
easy to operate and feasible to cover large areas, compared to the standard foil GEM

Geometrical parameters of the test Thick-GEM

Thickness	0.4mm
Drilled hole diameter	0.3mm
Etched Cu diameter	0.5mm
Pitch	0.7mm
Size	100mm x 100mm

Produced by REPIC Corp., Japan

Thick-GEM @ RIKEN

(K-,p) and (K-,d) measurements

(K-,p) and (K-,d) measurement

•Forward charged particle spectrometer will provide strong new physics case in the E15 experiment

•New forward charged particle spectrometer will be installed in addition to the original E15 experimental setup

Performance of the 50-GeV PS

Beam-Line Parameters

	K1.8			K1.8BR			K1.1 (S-Type)				
Max. Mom.	~2 GeV/c			1.2 GeV/ <i>c</i>		1.1 GeV/c					
Length	45.694 m			26.973 m		27.05 m					
Acceptance	2.03 msr.% ^{&}		4.5 msr.% ^{&}		4.1msr.% \						
Intensity	K⁻ (×10 ⁶)			K⁻ (×10 ⁶)		K⁻ (×10 ⁶)		K ⁺ (×10 ⁶)			
(ppp) <mark>#</mark>	50GeV15μA	30G	eV9μA	50GeV15μA	30Ge	V 9 μA	50GeV15μA	30Gev	′9μΑ	50-15	30-9
1.8 GeV/ <i>c</i>	9.6	2.0									
1.1 GeV/ <i>c</i>	0.6	0.1		10.7		2.3	9.1		2.0	81	11
0.8 GeV/ <i>c</i>				2.0		0.4	1.7		0.4	18	2.5
0.6 GeV/c			0.3	(0.05	0.2	0	.05	2.6	0.4	
DC-	750kV/10cm		500kV/10cm		750kV/10cm						
Separator	6m×2			6m		2m×2					
K ⁻ /π ^{-\$}	2.3 (1.8Ge	V/c)	2.6	10 (1.1GeV/c) 12		12	4.3(1.1Ge\	//c)	4.7	7	
X/Ysize @ FF	16/8 mm(FWHM)		38/7.4 mm(FWHM)		10/6 mm(FWHM)						

& MS1 opening: ±2mm, MS2 opening: <u>-3.25mm,+2.75mm</u>

\<u>MS1 opening: ±1mm, MS2: ±2mm</u>

using Sanford-Wang formula, assuming 1pulse=3.53s (0.7s flat top)

\$ Cloud π are not taken into account.

Proposals and PAC recommendation

	(Co-)Spokespersons	Affiliation	Title	Stat
E03	K. Tanida	Kyoto U.	Measurement of X rays from Ξ - Atom	S1
P04	J.C. Peng/S. Sawada	U. Illinois/KEK	Measurement of High-Mass Dimuon Production at the 50-GeV Proton Synchrotron	
E05	T. Nagae	KEK	Spectroscopic Study of Ξ -Hypernucleus, 12 Ξ Be, via 12C(K-, K+) Reaction	S2,D1
E06	J. Imazato	KEK	Measurement of T-Violating Transverse Muon Polarization in K+ -> pi0 mu+ nu Decays	S1
E07	K. Imai/K. Nakazawa/H. Tamura	Kyoto U./Gifu U./Tohoku U.	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	S2
E08	A. Krutenkova	ITEP	Pion Double Charge Exchange on Oxygen at J-PARC	S1
E10	A. Sakaguchi/T. Fukuda	Osaka U.	Production of Neutron-Rich Lambda-Hypernucleus with the Double Charge- Exchange Reaction	S1
E11	K. Nishikawa	KEK	Tokai-to-Kamioka (T2K) Long Baseline Neutrino Oscillation Experiment Proposal	S2
E13	T. Tamura	Tohoku U.	Gamma-ray Spectroscopy by Light Hypernuclei	S2,D1
E14	T. Yamanaka	Osaka U.	Proposal for KL -> pi0 mu mu-bar Experiment at J-PARC	S2
E15	M. Iwasaki/T. Nagae	RIKEN/KEK	A Search for deeply-bound kaonic nuclear states by in-flight 3HE(K-, n) Reaction	S2,D1
E16	S. Yokkaichi	RIKEN	Electron Pair Spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD	S1
E17	R. Hayano/H. Outa	U. Tokyo/RIKEN	Precision Spectroscopy of Kaonic 3He 3d -> 2p X-Rays	S2,D1
E18	H. Bhang/H. Outa/H. Park	SNU/RIKEN/KRISS	Coincidence Measurement of the Weak Decay of 12 Λ C and the three-body weak interaction process	S1
E19	M. Naruki	KEK	High-Resolution Search for Θ + Pentaquark in pi- p -> K- X Reaction	S2,D1
E22	S. Ajimura/A. Sakaguchi	Osaka U	Exclusive Study on the Lambda-N Weak Ineteraction in A=4 Lambda-Hypernuclei	S1