Proton Form Factor Measurements to Large Four Momentum Transfer Q² at Jefferson Lab

Vina Punjabi Norfolk State University Norfolk, Virginia, USA

Presented by C.F. Perdrisat College of William and Mary, Williamsburg, Virginia, USA

XIX International Baldin Seminar on High Energy Physics Problems Dubna September 29 – October 5, 2008

Outline

- Introduction
- Nucleon Structure and Form Factors
- Rosenbluth separation of G_{E}^{2} and G_{M}^{2}
- Recoil Polarization in elastic ep: Born approx.
- Polarization transfer Measurements at JLab
- Comparison of $G_{\rm Ep}/G_{\rm Mp}$ and $F_{\rm 2p}/F_{\rm 1p}$ to Theoretical Model Predictions
- Measurements of $G_{\rm Ep}/G_{\rm Mp}$ at 12 GeV.
- Conclusions

Introduction

- At large Q^2 electromagnetic Form Factors contain structure information on the many-body system of quarks and gluons of the nucleon. At low Q^2 they inform us about the pion cloud.
- When obtained from experiment, the Form Factors are relativistic invariants only to the extent that the probe is a **single** virtual **photon exchanged** between electron and nucleon; higher order contributions destroy this invariance, which one might regain after applying a number of radiative corrections; the current status of these corrections is unsatisfactory.

ep elastic Scattering, Born term

Nucleon vertex:
$$\Gamma_{\mu} \langle p, p \rangle = \gamma_{\mu} F_1(Q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2M} F_2(Q^2)$$

- F₁ helicity conserving Dirac FF
- F₂ helicity non-conserving Pauli FF
- Alternately, the Sachs form factors

 $G_{E}(Q^{2})=F_{1}(Q^{2})-\tau F_{2}(Q^{2})$

 $G_{M}(Q^{2})=F_{1}(Q^{2})+F_{2}(Q^{2})$ with $\tau=Q^{2}/4M^{2}$

In the Breit frame for vanishingly low Q^2 , G_E and G_M are Fourier transforms of charge- and current distributions.

Rosenbluth vs. Recoil Polarization

Cross section
$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{Mott}} \left(G_{Ep}^{2}(Q^{2}) + \frac{\tau}{\varepsilon} G_{Mp}^{2}(Q^{2}) \right) / (1+\tau)$$
with $\tau = \frac{Q^{2}}{4M^{2}}$ and $\varepsilon = \frac{1}{1+2(1+\tau)\tan^{2}\left(\frac{\theta_{e}}{2}\right)}$
Reduced cross section:
 $\sigma_{reduced} = \varepsilon(1+\tau) \frac{d\sigma}{d\Omega} / \frac{d\sigma}{d\Omega_{Mott}} = \varepsilon G_{Ep}^{2} + \tau G_{Mp}^{2} = \tau G_{Mp}^{2} \left[1 + \frac{\varepsilon}{\tau} \frac{G_{Ep}^{2}}{G_{Mp}^{2}} \right]$

Form Factor ratio:

$$\frac{G_{Ep}}{G_{Mp}} = -\frac{P_t}{P_\ell} \frac{(E_e + E_{e'})}{2M} \tan(\frac{\theta_e}{2})$$

All Rosenbluth separation data above Q^2 of 0.05 GeV²

Divided by the dipole form factor $G_D = (1+Q^2/0.71)^{-2}$

The form factors of the proton

GEp/GD from selected polarization experiments, showing to the Kelly fit

GMp using GEp/GMp from polarization, (Brash et al)

Transferred polarization is: (Akhiezer & Rekalo)

$$\begin{aligned} P_n &= 0\\ \pm h P_t &= \mp h \, 2 \sqrt{\tau (1+\tau)} G_E^p G_M^p \tan\left(\frac{\theta_e}{2}\right) / I_0\\ \pm h P_l &= \pm h (E_e + E_{e'}) (G_M^p)^2 \sqrt{\tau (1+\tau)} \tan^2\left(\frac{\theta_e}{2}\right) / M / I_0 \end{aligned}$$

Where, h=|h| is the beam helicity $I_0 = (G^p_E(Q^2))^2 + rac{ au}{\epsilon}(G^p_M(Q^2))^2$

$$\implies \frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

No error contributions from analyzing power and beam polarization measurements

Focal Plane Polarimeter

 P_{t}^{fpp} and P_{n}^{fpp} are the physical asymmetries at the FPP

φ Distribution and Physical Asymmetries

At Q^2 of 5.6 GeV², Proton Momentum 3.8 GeV/c

Physical Asymmetries are obtained from the helicity difference distributions

$$D_{i} = \left(f_{i}^{+} - f_{i}^{-}\right)/2$$
$$D_{i} = \frac{1}{2\pi} \left[A_{y}P_{t}^{fpp}\sin\varphi - A_{y}P_{n}^{fpp}\cos\varphi\right]$$

Sum distribution give instrumental asymmetries

$$E_i = (f_i - f_i)/2$$

 $E_i = \frac{\overline{\iota}}{2}$

Precession angle, $\chi = \gamma \, \kappa_p \, heta_{ extsf{bending}}$

$$\begin{pmatrix} P_n \\ P_t \\ P_l \end{pmatrix}_{\text{fpp}} = \begin{pmatrix} S_{nn} & S_{n't} & S_{nl} \\ S_{tn} & S_{tt} & S_{tl} \\ S_{ln} & S_{lt} & S_{ll} \end{pmatrix} \begin{pmatrix} P_n \\ P_t \\ P_l \end{pmatrix}_{\text{tgt}}$$

 P_n^{tgt} is zero in one photon exchange approximation and P_ℓ^{fpp} cannot be measured

Data From First Two JLab Experiments

Results of both experiments are published: (Jones *et al.*, Phys. Rev. Lett. 84, 1398 (2000); Gayou *et al.*, Phys. Rev. Lett. 88, 092301 (2002); Punjabi, Perdrisat *et al.*, Phys. Rev. C 71, 055202 (2005); Perdrisat, Punjabi and Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694-764, 2007)

G_{Ep} - III Experiment at JLab

- The Ratio G_{Ep}/G_{Mp} was measured with the recoil polarization technique at Q² of 5.2, 6.8 and 8.54 GeV² in Hall C at JLab, between October 2007 and June 2008.
- The experiment used the high momentum spectrometer (HMS) to detect proton; a new double focal plane polarimeter (FPP) in the focal plane of the HMS measured the polarization of the recoil proton.
- A large area Electromagnetic Calorimeter (BigCal) was used to detect the elastically scattered electrons in coincidence with protons.

Recognition

A number of JINR physicists have helped make GEp(III) successful, For the Focal Plane Polarimeter. In alphabetic order:

- S. Chernenko,
- D. Kirillov,
- N. Piskunov,
- S. Razin,
- I. Sitnik,
- L.Smykov[†]
- Yu Zanevski

We also greatly beneficiated from the contribution o]from the Protvino group of Prof. Vasiliev for BigCal.

Hall C Layout

BigCal glass

Double FPP in HMS

Carbon/CH₂/H₂ Analyzing Power Data

The Dubna polarimeter calibration campaign of 2001: L. S. Azhgirey et al, Nucl. Instr. and Method A 538 (2005) 431

Sample of Physical Asymmetry at Q² of 8.5 GeV²

Proton Momentum Spectrum

Red : all events, Cyan: with $\delta - \theta$ cut, Magenta: requiring co-planarity, Green: localization in BigCal and polar angle correlation with fit in Black Blue: the background

Proton Momentum Spectrum

Red : all events, Cyan: with $\delta - \theta$ cut, Magenta: requiring co-planarity, Green: localization in BigCal and polar angle correlation with fit in Black Blue: the background

Statistics and Preliminary Results from 1.5New equipment worked beautifully: BigCal and FPP 1.0 8.54 GeV² point: 1.63 billion $^{/}\mathrm{G}_{\mathrm{Mp}}$ triggers collected $\mu G_{Ep}/$ 0.5 Analyzing power at 5.4 GeV/c JLab Hall close to Dubna value 6.8 GeV² point: 160 million 0.0 triggers JLab G_{En}(I) and (II) G_{go}(III) 5.2 GeV² point: a test of the spin transport at 180° -0.52. 0. 6. 8. 10. 4. Q^2 in GeV^2 $\mu_p G_{Ep} / G_{Mp} = 1.056 - 0.1427 Q^2$

gepgmp world jlab 6gev 07 5/23/08

Dispersion Theory/VMD

VMD earliest model for nucleon e.m. Form Factors

Continue VMD

Belushkin et al. (06) with several more mesons, 2π and KK' continua. 15 parameter fit

Constituent Quark Models

Initially proposed by Isgur and Karl (78) Non-relativistic CQM

- Variety of q-q potentials (harmonic oscillator, hypercentral, linear)
- Non-relativistic treatment of quark dynamics, relativistic EM currents

Relativistic Constituent Quark Models (RCQM): Many different approaches: light-front formalism (Miller et al., Cardarelli et al.), point form (Boffi et al.), hypercentral potential (Giannini et al.) etc; ad hoc quark momentum wave function, or quark potential models wave function; relativistic treatment necessary: Parameters: m_q , confinement scale, $\kappa_u \kappa_d$.

A Pure S-Wave Covariant Model for the Nucleon

Franz Gross et al., Phys. Rev. C 77, 015202 (2008)

Covariant spectator theory modeling nucleon as a system of three valence Constituent Quarks with their own form factors

Four different models 8 possible adjustable Parameters, four constants fixed by constraints.

Zero crossing of G_{Ep} is natural!

Argument of F. Gross and collaborator (Gross, Ramalho and Peňa, 2008), zero crossing is quite natural, unlike the defunct "scaling" behavior.

Simple argument: as long as F_{1p} and F_{2p} are positive, and Q^2F_{2p}/F_{1p} behavior supports that, $G_{Ep}=F_{1p}-TF_{2p}$ must become negative somewhere!

Gross al et al: oversimplifying $G_{Ep}/G_{Mp} = (f_1 - \tau f_2)/(f_1 + f_2) = (1 - \tau \kappa)/(1 + \kappa).$ f_1 and f_2 are quark Dirac and Pauli FF, κ is anomalous magnetic moment, approximately 2.

The zero crossing is then at $Q^2=2 \text{ GeV}^2$!

Lattice QCD

FF from first principle, limited by computational power to pion mass larger than natural (and finite lattice size)

Matevosyan, Thomas, Miller(AIP 2005) Use LFCBM (Light Front Cloudy Bag model, rCQM) to extrapolate QCDSF 'data' to physical pion mass, (Gloeckeler et al 2005)

H.H. Matevosyan - PANIC 2005

LHPC collaboration (Edward et al, 06) unquenched, hybrid action, versus π mass

Vector $F_1V = F_1(I=1) = F_1p - F_1n$

Eliminates need to calculate unconnected loops

Poincare invariant Faddeev equation solution

Arrington, Roberts and Zanetti, J. Phys. G34, S23 (2007)

Based on Hoehl et al, N.P. A755:298 (2005)

Parameters: diquark magnetic dipole and quadrupole moments, q_{1+} and χ_{1+} and scalar to vector EM transition strength, χ_T

Generalized parton distributions

Ji, Radyushkin(1996): for large Q² hard exclusive process can be described by 4 transitions (GPDs); QCD factorization theorem.

V: $H(x, \xi, t), T : E(x, \xi, t), AV : H(x, \xi, t), PS : E(x, \xi, t)$

 $H^{q}(x, \xi = 0, t = 0) = q(x)$ unpolarized quark distribution $\tilde{H}^{q}(x,\xi=0,t=0) = \Delta q(x)$ polarized quark distribution

In DIS

First moments are electroweak form factors: F_1^q , F_2^q , G_{A}^{q} and G_{P}^{q} ; for example:

$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t) \quad Dirac$$
$$\int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t) \quad Pauli$$

Electromagnetic Form Factors

PROTON

NEUTRON

modified Regge parameterization : Guidal, Polyakov, Radyushkin, Vanderhaeghen, Phys.Rev. D72 (2005) 054013

(Used to estimate the quark contribution to the spin)

GPDs : 3D quark/gluon imaging of nucleon

Fourier transform of t-dependence of GPDs, make it possible to access the spatial distributions of partons in the transverse plane, providing a 3dimensional picture of the nucleon :

simultaneous distributions of quarks w.r.t. longitudinal momentum \times and transverse position b

➡ theoretical parameterization needed

Proton: F2 /F1 and pQCD

Low Q² Behavior of Nucleon FFs

Friedrich and Walcher, Eur. Phys. J. A17, 607. Emphasize the low Q^2 region to show the structure at 0.2 GeV²

 G_{Ep} , G_{Mp} and G_{Mn} show minimum and G_{En} show maximum at $Q^2 \approx 0.2 \text{ GeV}^2$

Charge density and Pion cloud

•Kelly has performed simultaneous fit to all four EMFF in coordinate space using Laguerre-Gaussian expansion and firstorder approximation for Lorentz contraction of local Breit frame

$$\tilde{G}_{E,M}(k) = G_{E,M}(Q^2)(1+\tau)^2$$
 with $k^2 = \frac{Q^2}{1+\tau}$ and $\tau = \left(\frac{Q}{2M}\right)$

•Friedrich and Walcher have performed a similar analysis using a sum of dipole FF for valence quarks but neglecting the Lorentz contraction

•Both observe a structure in the proton and neutron densities at ~0.9 fm which they assign to the pion cloud

Electric Form Factor of the Neutron

All polarization results, including new Bates/BLAST data (Geis 2008) Two of the Hall A preliminary data shown (02-013), anticipated error for two more (5/2008)

Magnetic Form Factor of the Neutron

gmngd all col 6/6/08

Preliminary Bates/BLAST results d(e,e'), Meitanis et al

Measuring G_{Ep}/G_{Mp} in Hall C at 12 GeV

Gep/GMp with 12 GeV beam at JLab

gep he 12gev 8/28/08

Measurement of G_{Ep}/G_{Mp} in Hall A at 12 GeV

Conclusions

Discrepancy between Rosenbluth and polarization transfer real, not an experimental problem.

 G_{Ep} (III) collaboration has taken data at Q² of 5.2, 6.8 and 8.45 GeV². Data are currently being analyzed.

Many new model calculations inspired by our results: VMD models give good parameterization of FF at low to intermediate Q². All relativistic constituent quark models predict decreasing ratio with increasing Q². A few lattice QCD and direct solution of Dyson Schwinger are now available.

pQCD prediction that asymptotically Q^2F_2 / F_1 becomes constant is not seen. New pQCD prediction, include logarithmic corrections.

Starting in 2014, Jlab with 12 GeV beams will provide means for next step, In creasing Q² to 15 GeV². One experiment approved, another in preparation (LOI 2006).

The END

GPDs yield 3-dim quark structure of nucleon

Burkardt (2000, 2003) Belitsky, Ji, Yuan (2004)

 $f(x,b_1)$

Elastic Scattering transverse quark distribution in coordinate space

DIS

longitudinal guark distribution in momentum space

 b_{\perp} х

DES (GPDs) fully-correlated guark distribution in both coordinate and momentum space

Spectrometer Pair in Hall A

