TRANSMUTATION OF ¹²⁹I BY SECONDARY NEUTRONS OF THE GAMMA-MD SETUP EXPOSED TO 2.33 GEV DEUTERONS: EXPERIMENT AND MODELING

J. Adam, V.S. Pronskikh, V.M. Tsoupko-Sitnikov, V.G. Kalinnikov, A.A. Solnyshkin, V.I. Stegailov, V.M. Golovatiouk, N.M. Vladimirova, M.I. Krivopustov, V.A. Babkin, G.G. Golovan', A.D. Kovalenko Joint Institute for Nuclear Research, Dubna

> W. Westmeier, H. Robotham *Kernchemie Institute, Phillips-Universität, Marburg, Germany*

M. Fragopoulou, M. Manolopoulou, S. Stoulos, M. Zamani-Valasiadou Aristotle University, Thessaloniki, Greece

> A.M. Khilmanovich, B.A. Martsynkevich, T.N. Korbut Stepanov Institute of Physics NAS, Minsk, Belarus

I.V. Zhuk, A.S. Potapenko Joint Institute of Power and Nuclear Research, Sosny, Minsk, Belarus

A.R. Balabekyan

Yerevan State University, Yerevan, 1 Alex Manoogian, Republic of Armenia

GAMMA-MD setup -model of a reactor core

Sizes: $110 \times 110 \times 60$ cm (blocks $25 \times 25 \times 60$ cm and $20 \times 20 \times 60$ cm, lead target d=8 cm, 60 cm length

$\Gamma_{ml} = 3800 \text{ °C}, T_{fire} \text{ (air)} = 750 \text{ °C} \text{ (safe)}$	σ (absorb, term)=0,0035 b, λ =	= 50 cm(water σ = 0,33 b, λ = 5 cm	n)
---	---	---	----

Deuteron total kinetic	Gaussian beam FWHM parameters (cm)		Coordinates of the beam center (cm)		Intergral deuteron	Beam percent hit the lead target (%)	
energy, Gev	X	Y	Xc	Yc	fluence		
2.33	1,5±0,1	2,4±0,1	0,7±0,1	0,2±0,1	1,85 ·10 ¹³	1,7·10 ¹³	92.2%

GAMMA-MD setup at the Nuclotron beam

Location of the samples in GAMMA-2MD

Block No	I-129	Np-237	Pu-239	Pu-238
	L (cm)	L (cm)	L (cm)	L (cm)
14	13,8	17,5	23,3	26
9	24	29,3	33	30,8
4	51,3	56,3	59,8	58,5

Other samples used in the experiment:

threshold detectors Mg, Fe, Al, Co, Cu, Bi, Au, In, Y,Nb, W, V, Au, Lu, Dy, Ni, Sb radiochemical sensor La-139, 11 samples He-3, He-4 neutron counters, track detectors CR39+B-10 (+Cd) Lexan+U-5, Th-232,

4 51,5 50,5 59,8 59,8 Au-197, Bi-209 U-8, Au-197, Cd foils **XIX International Baldin Seminar on High Energy Physics Problems, September 2008, Dubna**

Samples used in the GAMMA-MD irradiation

Маркиров ка образцов	Чистыі	í bec, Γ	Лигат ве	урный с, г	Активность , МБк (мКи)	Удельная Активност ь, МБк/г (мКи/г)
I-129-1 1,57·Е7 лет	I-129	0,521	NaI	0,739	3,4 (0,092)	5,24 (0,147)
1-129-2	I-129	0,591	NaI	0,838	3,86 (0,10)	5,24 (0,147)
1-129-3	I-129	0,339	NaI	0,480	2,2 (0,06)	5,24 (0,147)
I-129-4	I-129	0,218	NaI	0,309	1,42 (0,038)	5,24 (0,147)
Np-237-1 α-2,14·E6 лет	Np-237	8,987	NpO ₂	1,121	25,5 (0,69)	25,9 (0,7)
Np-237-2	Np-237	1.115	NpO ₂	1,266	28,86 (0,78)	25,9 (0,7)
Np-237-3	Np-237	1,085	NpO ₂	1,232	28,12 (0,76)	25,9 (0,7)
Np-237-4	Np-237	1,011	NpO ₂	1,147	26,27 (0,71)	25,9 (0,7)
Pu-239-1 α-2,44·E4 лет	Pu-239	0,503	PuO ₂	0,571	ГБк (мКи) 1,15 (31,19)	МБк/мг (мКи/мг) 2,3 (0,062)
Pu-239-2	Pu-239	0,511	PuO ₂	0,579	1,17 (31,68)	2,3 (0,062)
Pu-239-3	Pu-239	0,455	PuO ₂	0,516	1,04 (28,2)	2,3 (0,062)
Pu-239-4	Pu-239	0,456	PuO ₂	0,506	1,02 (27,65)	2,3 (0,062)
Pu-239-5	Pu-239	0,462	PuO ₂	0,524	1,06 (28,64)	2,3 (0,062)
Pu-239-6	Pu-239	0,454	PuO ₂	0,515	1,04 (28,15)	2,3 (0,062)
Am-241-1 α-432 года	Am-241	0,183	AmO ₂	0,208	ГБк (мКн) 23,2 (627)	МБк/мг (мКи/мг) 127 (3,43)
Am-241-2	Am-241	0,183	AmO ₂	0,208	23,2 (627)	127 (3,43)
Am-241-3	Am-241	0,186	AmO ₂	0,211	23,6 (638)	127 (3,43)
Ри-238-1 87,7 лет	Pu-238	0,0517	PuO ₂	0,0734	879	17,1
Pu-238-2	Pu-238	0,0516	PuO ₂	0,0733	877	17,1
Pu-238-3	Pu-238	0,0477	PuO ₂	0,0677	811	17,1

From IPPE, Obninsk

Deuteron beam properties and monitoring techniques

Spectrometry with HPGe detectors

Gamma-spectra analysis was performed using The following program codes: GAMMAW (Dr. Westmeier GMBH), monitors DEIMOS32 (Dr. Frana, Rez near Prague), Fitzpeaks (Dr. Fitzgerald, math of SAMPO80)

Program package J. Adam, V.S. Pronskikh, A.R. Balabekyan et al, P10-2000-28, Measurement Techniques, 44(2001) 93-100. Energy, efficiency calibration, background correction, surplus peaks removal, nuclide identification, cross section calculations, selective averaging

HPGe detector	CANBERRA GR1819	ORTEC GMX- 23200	ORTEC GMX- 20190-P	CANBERRA GC1520
Rel. efficiency	18.9 %	27.7 %	28.3 %	15%
Resolution at (E _g 1332 keV)	1.78 keV	1.86 keV	1.80 keV	2.0 keV
Amplifier	ORTEC 973	CANBERRA 2024	CANBERRA 2026	CANBERRA 2002
ADC	ORTEC 921 SPECTR. MASTER	ORTEC 919 SPECTR. MASTER	ORTEC 919 SPECTR. MASTER	CANBERRA

Transmutation rates B

Product	Target	Relative r	Relative rates B [g ⁻¹ , d ⁻¹]		
		19 cm	29 cm	55 cm	
¹³⁰ I	¹²⁹ I	3.8(5)E-3	3.1(4)E-3	6.0(9)E-4	
¹²⁴ I	¹²⁹ I	5.1(6)E-6	5.0(7)E-7	1.3(3)E-7	
¹²⁶ I	¹²⁹ I	3.8(5)E-6	1.6(1)E-6		
¹²⁸ I	¹²⁷ I	1.9(2)E-3	1.2(1)E-3	2.2(3)E-4	
Transmutation	¹²⁹ I	23.8	18.8	3.8	
I=10mA, 30d	(%)				

Monte-Carlo simulations with FLUKA code

G. Battistoni et al., Braz.J.Phys. 2004

Fluka (RQMD fully integrated). Improvement of classical INC by adding dynamical modelling of the nuclear field among nucleons in the course of the reaction, with similar treating of individual two-body scattering/interactions. Applicable from 0.1 GeV/n to hundreds GeV/n.

Comparison with the experimental data on ¹³⁰I production

B-values for the cylinders at 13.8, 24, and 51.3 cm distances from the Z-axis, respectively Differential B-values for the three cylinders calculated for each of the 72 neutron groups separately using JEFF-3.1 cross section library and employing NJOY program code

