
Kaon wave function at NNLO in QCD

Alexei A. Pivovarov

Institute for Nuclear Research, Moscow, Russia

XIX International Baldin Seminar on high energy physics problems
Relativistic Nuclear Physics and Quantum Chromodynamics

Dubna, Russia, Sep 29 – Oct 4, 2008



Outline

• Light-cone distribution amplitudes

• Correlation function at NNLO

• Numeric analysis with QCD sum rules

• Conclusion

2



1. Light-cone distribution amplitudes (LCDA)

LCDA enter factorization formulae used for description of exclusive processes
in QCD. Typical representation for a physical amplitude A(Q) is

A(Q) =

∫

dξ C(Q, αs(Q), µF ; ξ) ⊗ φ(ΛQCD, µF ; ξ)

with C(Q,αs(Q), µF ; ξ) - hard part computed in PT in αs(Q) at scale Q,
and φ(ΛQCD, µF ; ξ) - soft part characterizing an hadron.

Examples:
Pion EM form factor at large Q2

Light cone sum rules for form factors of heavy hadrons
QCD factorization in B-meson decays

The formal framework at present – soft-collinear effective theory
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Twist-2 LCDA of the kaon ϕK(u, µ) is defined through a matrix element
of nonlocal quark-antiquark operator with light-cone like separation

〈K−(q)|s̄(z)γµγ5 [z,−z]u(−z)|0〉z2=0

= −iqµfK

∫ 1

0

du eiuq·z−iūq·zϕK(u, µ)

s- and ū carry the momentum fractions u and ū = 1 − u; the Wilson line

[x1, x2] = P exp(i

∫ 1

0

dv(x1 − x2)ρA
ρ(vx1 + v̄x2))

makes the matrix element gauge invariant;

µ – the normalization scale.
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Gegenbauer polynomials C
3/2
n (x) expansion

ϕK(u, µ) = 6uū

(

1 +
∞
∑

n=1

aK
n (µ)C3/2

n (u − ū)

)

aK
n (µ) - Gegenbauer moments.

aK
1 is related to the difference between the longitudinal momenta of the

strange and nonstrange quarks in the kaon.

We determine a numerical value of this asymmetry parameter aK
1 (µ) at

a low scale µ ∼ 1 GeV with NNLO accuracy
(published in K. G. Chetyrkin, A. Khodjamirian, and AAP,
Phys. Lett. B 661, 661 (2008))
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The method of calculation is based on QCD sum rules.

aK
1 reduces to the vacuum-to-kaon matrix element of a local operator

〈K−(q)|s̄γνγ5i
↔

Dλu|0〉 = −iqνqλfK
3

5
aK
1

↔

Dλ=
→

Dλ −
←

Dλ

Previous results (average)

aK
1 (1 GeV) = 0.06 ± 0.03

The error of the prediction is large: 50%
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2. Correlation function
Correlation function for aK

1 reads

Πµνλ(q) = i

∫

d4x eiq·x〈T
{

ū(x)γµγ5s(x), s̄(0)γνγ5i
↔

Dλu(0)
}

〉

Diagrams for OPE at LO: PT loop, quark-condensate, gluon-, quark-gluon
and four-quark condensate diagrams.

q

s

u
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OPE gives an expansion for Π(Q2) in powers of 1/Q at large Q

Π(Q2, µ) =
A2(Q

2, µ)

Q2
+

A4(Q
2, µ)

Q4
+

A6(Q
2, µ)

Q6
+ ...

Aj has a double expansion in αs and m2
s (u, d-quark masses are neglected)

Ad = a
(0,0)
d +

(αs

π

)

a
(1,0)
d +

(αs

π

)2

a
(2,0)
d +

(

m2
s

Q2

)

a
(0,1)
d

+

(

m2
s

Q2

)2

a
(0,2)
d +

(αs

π

)

(

m2
s

Q2

)

a
(1,1)
d + . . .

Numerical role of small parameters at Q2 ≃ 1 GeV2:
for αs(1 GeV) = 0.47 and ms(1 GeV) < 150 MeV,
one has m2

s/Q2 ≤ 0.02 ≪ αs/π ≃ 0.15.
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So far only the O(αs) correction (the NLO accuracy in αs)
to the quark-condensate contribution A4 was calculated.
The result has been obtained by two groups that contradict each other.

In our work, for the largest d = 2, 4 terms of the OPE the NNLO
accuracy in αs (O(α2

s) order) is achieved.
The discrepancy between previous calculations has been resolved.

The techniques of multi-loop calculations are employed. Programs:

QGRAF – diagram generation,

FORM – symbolic manipulation for large (in fact, huge) expressions,

MINCER – a routine for three-loop diagrams computation.
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Results of the calculation for the correlator at NNLO:

d = 2 : A2(Q
2, µ) =

m2
s

4π2

(

1 +
αs

π

[

26

9
+

10

9
lQ

]

+
(αs

π

)2
[

366659

11664
−

29

9
ζ(3) +

14449

972
lQ +

605

324
l2Q

]

+ 3
m2

s

Q2

(

5

2
+ lQ

)

)

;

d = 4 : A4(Q
2, µ) = −ms〈s̄s〉

(

1 −
αs

π

[

112

27
+

8

9
lQ

]

−
(αs

π

)2
[

28135

1458
− 4ζ(3) +

218

27
lQ +

49

81
l2Q

]

+ 2
m2

s

Q2

)

−ms〈ūu〉

(

4αs

9π
+

(αs

π

)2
[

59

54
+

49

81
lQ

]

)
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For completeness I give here the expression for dimension six contribution
to the correlation function.

It is not large and known at the LO in O(αs) only.

d = 6 :

A6(Q
2, µ) =

2

3
ms〈s̄Gs〉 +

1

3
m2

s〈G
2〉 (1 + lQ) −

32

27
παs

(

〈s̄s〉2 − 〈ūu〉2
)

Here lQ = ln(µ2/Q2).

Now we turn to a physical representation of the correlation function
necessary for the QCD sum rules analysis
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The hadronic dispersion relation reads

Π(q2) =
3
5a

K
1 f2

K

m2
K − q2

+

∞
∫

sh

ds
ρh(s)

s − q2
.

The ρh(s) includes contributions of Kππ, K∗π, Kρ, K1(1270),
K1(1400),... To approximate ρh(s), we employ the quark-hadron duality

ρh(s) = ρOPE(s)Θ(s − sK
0 ) ,

where sK
0 is the effective threshold.

Finally, the sum rule for aK
1 takes the form

aK
1 =

5

3f2
K

em2
K/M2

(

Π(M2) −

∞
∫

sK
0

dsρOPE(s)e−s/M2

)
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3. Numerical analysis

Input parameters:

• kaon mass m±
K = 493.58 MeV

• kaon decay constant fK = 159.8 ± 1.4 ± 0.44 MeV

• strange quark mass ms(2 GeV) = 98 ± 16 MeV

• αs(mZ) = 0.1176 ± 0.002 (αs(1 GeV)/π = 0.15 ± 0.01)

• 〈q̄q(2 GeV)〉 = −(0.264+0.031
−0.020 GeV)3

• 〈s̄Gs〉 = m2
0〈s̄s〉(1 GeV) with m2

0 = 0.8 ± 0.2 GeV2
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Numerical prediction of the sum rule is

aK
1 (1 GeV) = 0.100

±0.003|SR ± 0.003|αs ± 0.035|ms ± 0.022|mq ± 0.013|cond

Adding the individual uncertainties in quadrature we obtain

aK
1 (1 GeV) = 0.10 ± 0.04

Turn to the pattern of convergence of the perturbative series as it
appears in numerical analysis of sum rules.
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PT corrections strongly enhance d = 2, O(m2
s) term

Π(m2
s) =

m2
s

4π2

[

1 + 3.53
(αs

π

)

+33.7
(αs

π

)2
]

For quark condensate contribution (d = 4) corrections are smaller

Π(ms〈s̄s〉) = ms〈s̄s〉

[

1 − 3.77
(αs

π

)

−10.8
(αs

π

)2
]

Thus, at NNLO the numerical pattern of the sum rule for aK
1 changes:

relative weight of d = 2 term becomes larger.

The NNLO precision in αs makes the dependence of the prediction for
aK
1 on the renormalization scale µ very week.
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4. Conclusion

The NNLO PT corrections to the QCD sum rule for aK
1 are numerically

important, they change the relative magnitude of the d = 2 (loop diagrams)
and d = 4, 6 (condensate) terms in the OPE and give

aK
1 (1 GeV) = 0.10 ± 0.04

while previous result (average)

aK
1 (1 GeV) = 0.06 ± 0.03

The uncertainty of aK
1 is still large due mainly to the poor precision of the

light quark masses: ms directly entering the sum rule and mu,d determining
the quark-condensate densities via Gell-Mann-Oakes-Renner relation.
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Our result for aK
1 is larger than two recent lattice determinations:

aK
1 (2 GeV) = 0.0453 ± 0.0009 ± 0.0029

V. M. Braun et al., [QCDSF/UKQCD Collaboration]
Phys. Rev. D 74, 074501 (2006)

and

aK
1 (2 GeV) = 0.048 ± 0.003

M. A. Donnellan et al., “Lattice Results for Vector Meson Couplings and
Parton Distribution Amplitudes,” arXiv:0710.0869 [hep-lat];
P. A. Boyle, M. A. Donnellan, J. M. Flynn, A. Juttner, J. Noaki,
C. T. Sachrajda and R. J. Tweedie [UKQCD Collaboration], “A lattice
computation of the first moment of the kaon’s distribution amplitude,”
Phys. Lett. B 641, 67 (2006).
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By evolving our result to the scale 2 GeV we find

aK
1 (2 GeV) = 0.08 ± 0.04
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